1.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
2.Construction of a nomogram model for predicting risk of spread through air space in sub-centimeter non-small cell lung cancer
Xiao WANG ; Yao ZHANG ; Kangle ZHU ; Yi ZHAO ; Jingwei SHI ; Qianqian XU ; Zhengcheng LIU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):345-352
Objective To investigate the correlation between spread through air space (STAS) of sub-centimeter non-small cell lung cancer and clinical characteristics and radiological features, constructing a nomogram risk prediction model for STAS to provide a reference for the preoperative planning of sub-centimeter non-small cell lung cancer patients. Methods The data of patients with sub-centimeter non-small cell lung cancer who underwent surgical treatment in Nanjing Drum Tower Hospital from January 2022 to October 2023 were retrospectively collected. According to the pathological diagnosis of whether the tumor was accompanied with STAS, they were divided into a STAS positive group and a STAS negative group. The clinical and radiological data of the two groups were collected for univariate logistic regression analysis, and the variables with statistical differences were included in the multivariate analysis. Finally, independent risk factors for STAS were screened out and a nomogram model was constructed. The sensitivity and specificity were calculated based on the Youden index, and area under the curve (AUC), calibration plots and decision curve analysis (DCA) were used to evaluate the performance of the model. Results A total of 112 patients were collected, which included 17 patients in the STAS positive group, consisting of 11 males and 6 females, with a mean age of (59.0±10.3) years. The STAS negative group included 95 patients, with 30 males and 65 females, and a mean age of (56.8±10.3) years. Univariate logistic regression analysis showed that male, anti-GAGE7 antibody positive, mean CT value and spiculation were associated with the occurrence of STAS (P<0.05). Multivariate regression analysis showed that associations between STAS and male (OR=5.974, 95%CI 1.495 to 23.872), anti-GAGE7 antibody positive (OR=11.760, 95%CI 1.619 to 85.408) and mean CT value (OR=1.008, 95%CI 1.004 to 1.013) were still significant (P<0.05), while the association between STAS and spiculation was not significant anymore (P=0.438). Based on the above three independent predictors, a nomogram model of STAS in sub-centimeter non-small cell lung cancer was constructed. The AUC value of the model was 0.890, the sensitivity was 76.5%, and the specificity was 91.6%. The calibration curve was well fitted, suggesting that the model had a good prediction efficiency for STAS. The DCA plot showed that the model had a good clinically utility. Conclusion Male, anti-GAGE7 antibody positive and mean CT value are independent predictors of STAS positivity of sub-centimeter non-small cell lung cancer, and the nomogram model established in this study has a good predictive value and provides reference for preoperative planning of patients.
3.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
4.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
5.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
6.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
7.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
8.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
9.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
10.Buzhong Yiqi Decoction alleviates immune injury of autoimmune thyroiditis in NOD.H-2~(h4)mice via c GAS-STING signaling pathway.
Yi-Ran CHEN ; Lan-Ting WANG ; Qing-Yang LIU ; Zhao-Han ZHAI ; Shou-Xin JU ; Xue-Ying CHEN ; Zi-Yu LIU ; Xiao YANG ; Tian-Shu GAO ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2025;50(7):1872-1880
This study aims to explore the effects of Buzhong Yiqi Decoction(BYD) on the cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS)-stimulator of interferon genes(STING) signaling pathway in the mouse model of autoimmune thyroiditis(AIT) and the mechanism of BYD in alleviating the immune injury. Forty-eight NOD.H-2~(h4) mice were assigned into normal, model, low-, medium-, and high-dose BYD, and selenium yeast tablets groups(n=8). Mice of 8 weeks old were treated with 0.05% sodium iodide solution for 8 weeks for the modeling of AIT and then administrated with corresponding drugs by gavage for 8 weeks before sampling. High performance liquid chromatography was employed to measure the astragaloside Ⅳ content in BYD. Hematoxylin-eosin staining was employed to observe the pathological changes in the mouse thyroid tissue. Enzyme-linked immunosorbent assay was employed to measure the serum levels of thyroid peroxidase antibody(TPO-Ab), thyroglobulin antibody(TgAb), and interferon-γ(IFN-γ). Flow cytometry was employed to detect the distribution of T cell subsets in the spleen. The immunohistochemical method was used to detect the expression of cGAS, STING, TANK-binding kinase 1(TBK1), and interferon regulatory factor 3(IRF3). Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of markers related to the cGAS-STING signaling pathway in the thyroid tissue. The results showed that the content of astragaloside Ⅳ in BYD was(7.06±0.08) mg·mL~(-1). Compared with the normal group, the model group showed disrupted structures of thyroid follicular epithelial cells, massive infiltration of lymphocytes, and elevated levels of TgAb and TPO-Ab. Compared with the model group, the four treatment groups showed intact epithelial cells, reduced lymphocyte infiltration, and lowered levels of TgAb and TPO-Ab. Compared with the normal group, the model group showed increases in the proportions of Th1 and Th17 cells, a decrease in the proportion of Th2 cells, and an increase in the IFN-γ level. Compared with the model group, the four treatment groups presented decreased proportions of Th1 and Th17 cells and lowered levels of IFN-γ, and the medium-dose BYD group showed an increase in the proportion of Th2 cells. Compared with the normal group, the modeling up-regulated the mRNA levels of cGAS, STING, TBK1, and IRF3 and the protein levels of cGAS, p-STING, p-TBK1, and p-IRF3. Compared with the model group, the four treatment groups showed reduced levels of cGAS, STING, TBK1, and IRF3-positive products, down-regulated mRNA levels of cGAS, STING, and TBK1, and down-regulated protein levels of cGAS and p-STING. The high-dose BYD group showed down-regulations in the mRNA level of IRF3 and the protein levels of p-TBK1 and p-IRF3. The above results indicate that BYD can repair the imbalance of T cell subsets, alleviate immune injury, and reduce thyroid lymphocyte infiltration in AIT mice by inhibiting the cGAS-STING signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
Thyroiditis, Autoimmune/metabolism*
;
Mice
;
Membrane Proteins/metabolism*
;
Mice, Inbred NOD
;
Humans
;
Female
;
Nucleotidyltransferases/metabolism*
;
Male
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail