1.Acute Inflammatory Pain Induces Sex-different Brain Alpha Activity in Anesthetized Rats Through Optically Pumped Magnetometer Magnetoencephalography
Meng-Meng MIAO ; Yu-Xuan REN ; Wen-Wei WU ; Yu ZHANG ; Chen PAN ; Xiang-Hong LIN ; Hui-Dan LIN ; Xiao-Wei CHEN
Progress in Biochemistry and Biophysics 2025;52(1):244-257
ObjectiveMagnetoencephalography (MEG), a non-invasive neuroimaging technique, meticulously captures the magnetic fields emanating from brain electrical activity. Compared with MEG based on superconducting quantum interference devices (SQUID), MEG based on optically pump magnetometer (OPM) has the advantages of higher sensitivity, better spatial resolution and lower cost. However, most of the current studies are clinical studies, and there is a lack of animal studies on MEG based on OPM technology. Pain, a multifaceted sensory and emotional phenomenon, induces intricate alterations in brain activity, exhibiting notable sex differences. Despite clinical revelations of pain-related neuronal activity through MEG, specific properties remain elusive, and comprehensive laboratory studies on pain-associated brain activity alterations are lacking. The aim of this study was to investigate the effects of inflammatory pain (induced by Complete Freund’s Adjuvant (CFA)) on brain activity in a rat model using the MEG technique, to analysis changes in brain activity during pain perception, and to explore sex differences in pain-related MEG signaling. MethodsThis study utilized adult male and female Sprague-Dawley rats. Inflammatory pain was induced via intraplantar injection of CFA (100 μl, 50% in saline) in the left hind paw, with control groups receiving saline. Pain behavior was assessed using von Frey filaments at baseline and 1 h post-injection. For MEG recording, anesthetized rats had an OPM positioned on their head within a magnetic shield, undergoing two 15-minute sessions: a 5-minute baseline followed by a 10-minute mechanical stimulation phase. Data analysis included artifact removal and time-frequency analysis of spontaneous brain activity using accumulated spectrograms, generating spectrograms focused on the 4-30 Hz frequency range. ResultsMEG recordings in anesthetized rats during resting states and hind paw mechanical stimulation were compared, before and after saline/CFA injections. Mechanical stimulation elevated alpha activity in both male and female rats pre- and post-saline/CFA injections. Saline/CFA injections augmented average power in both sexes compared to pre-injection states. Remarkably, female rats exhibited higher average spectral power 1 h after CFA injection than after saline injection during resting states. Furthermore, despite comparable pain thresholds measured by classical pain behavioral tests post-CFA treatment, female rats displayed higher average power than males in the resting state after CFA injection. ConclusionThese results imply an enhanced perception of inflammatory pain in female rats compared to their male counterparts. Our study exhibits sex differences in alpha activities following CFA injection, highlighting heightened brain alpha activity in female rats during acute inflammatory pain in the resting state. Our study provides a method for OPM-based MEG recordings to be used to study brain activity in anaesthetized animals. In addition, the findings of this study contribute to a deeper understanding of pain-related neural activity and pain sex differences.
2.Effects and mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure
Meiling MAO ; Jianqi LU ; Zhide ZHU ; Yan PANG ; Liyu XIE ; Jiayong CHEN ; Xinyu WU ; Xiang XIAO ; Junshen LU ; Weiqi SHI
China Pharmacy 2025;36(2):160-165
OBJECTIVE To investigate the effects and potential mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure (CHF). METHODS The CHF model was established by ligating the left anterior descending branch of the coronary artery. Modeled rats were divided into model group, Qiangxin decoction low-dose and high-dose groups (12.25, 24.50 g/kg, calculated by crude drug), and chemical medicine group (Sacubitril valsartan sodium tablets, 10.42 mg/kg), with 10 rats in each group; control group was set up without treatment. Each group of rats was orally administered with the corresponding medication or normal saline twice a day for 28 consecutive days. After the last medication, the contents of N-terminal pro-brain natriuretic peptide (NT-proBNP) and adenosine triphosphate (ATP) in serum and phosphatidic acid (PA) and cardiolipin (CL) in myocardial tissue were all detected; the pathological damage and collagen fibrosis of rat myocardial tissue were observed; the apoptosis of myocardial cells was determined; the ultrastructure of myocardial tissue was observed; the protein expressions of mitofusin 1 (Mfn1), Mfn2, optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (Drp1) were all detected in myocardial tissue. RESULTS Compared with control group,the serum content of NT-proBNP, apoptotic rate of myocardial cells, and relative expressions of S-OPA1 and Drp1 proteins were all increased significantly; serum content of ATP,contents of PA and CL, and relative expressions of Mfn1, Mfn2 and L-OPA1 proteins were all significantly reduced (P<0.05). There were abnormal membrane tissue structure in various layers of myocardial tissue, degeneration and necrosis of myocardial cells, and severe fibrosis; the mitochondria were swollen, with reduced or absent cristae, and uneven matrix density. After intervention with Qiangxin decoction, the levels of the aforementioned quantitative indicators in serum and myocardial tissue of rats (excluding CL content in the Qiangxin decoction low- dose group) were significantly reversed (P<0.05); the pathological damage of myocardial tissue had significantly improved, fibrosis had significantly reduced, mitochondrial morphology tended to be normal, cristae had increased, and matrix density was uniform. CONCLUSIONS Qiangxin decoction can regulate myocardial mitochondrial function and structural integrity of CHF rats, thereby improving myocardial energy metabolism and antagonizing myocardial fibrosis, the mechanism of which may be associated with activating PA/Mfn/CL signaling pathway.
3.Effects and mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure
Meiling MAO ; Jianqi LU ; Zhide ZHU ; Yan PANG ; Liyu XIE ; Jiayong CHEN ; Xinyu WU ; Xiang XIAO ; Junshen LU ; Weiqi SHI
China Pharmacy 2025;36(2):160-165
OBJECTIVE To investigate the effects and potential mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure (CHF). METHODS The CHF model was established by ligating the left anterior descending branch of the coronary artery. Modeled rats were divided into model group, Qiangxin decoction low-dose and high-dose groups (12.25, 24.50 g/kg, calculated by crude drug), and chemical medicine group (Sacubitril valsartan sodium tablets, 10.42 mg/kg), with 10 rats in each group; control group was set up without treatment. Each group of rats was orally administered with the corresponding medication or normal saline twice a day for 28 consecutive days. After the last medication, the contents of N-terminal pro-brain natriuretic peptide (NT-proBNP) and adenosine triphosphate (ATP) in serum and phosphatidic acid (PA) and cardiolipin (CL) in myocardial tissue were all detected; the pathological damage and collagen fibrosis of rat myocardial tissue were observed; the apoptosis of myocardial cells was determined; the ultrastructure of myocardial tissue was observed; the protein expressions of mitofusin 1 (Mfn1), Mfn2, optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (Drp1) were all detected in myocardial tissue. RESULTS Compared with control group,the serum content of NT-proBNP, apoptotic rate of myocardial cells, and relative expressions of S-OPA1 and Drp1 proteins were all increased significantly; serum content of ATP,contents of PA and CL, and relative expressions of Mfn1, Mfn2 and L-OPA1 proteins were all significantly reduced (P<0.05). There were abnormal membrane tissue structure in various layers of myocardial tissue, degeneration and necrosis of myocardial cells, and severe fibrosis; the mitochondria were swollen, with reduced or absent cristae, and uneven matrix density. After intervention with Qiangxin decoction, the levels of the aforementioned quantitative indicators in serum and myocardial tissue of rats (excluding CL content in the Qiangxin decoction low- dose group) were significantly reversed (P<0.05); the pathological damage of myocardial tissue had significantly improved, fibrosis had significantly reduced, mitochondrial morphology tended to be normal, cristae had increased, and matrix density was uniform. CONCLUSIONS Qiangxin decoction can regulate myocardial mitochondrial function and structural integrity of CHF rats, thereby improving myocardial energy metabolism and antagonizing myocardial fibrosis, the mechanism of which may be associated with activating PA/Mfn/CL signaling pathway.
4.Clinical efficacy of minimally invasive tendon blade technique in the treatment of moderate and severe gluteal muscle contracture.
Jia-Kai GAO ; Tao-Ran WANG ; Long BI ; Xiao-Chao CHEN ; Yan-Wu LIU ; Yao-Ping WU ; Xiang HE ; Zhi-Xia NIU
China Journal of Orthopaedics and Traumatology 2025;38(4):420-423
OBJECTIVE:
To investigate the clinical effect of minimally invasive technique in the treatment of moderate and severe gluteal muscle contracture.
METHODS:
A retrospective study was conducted on 85 patients (170 sides) with bilateral gluteal muscle contracture admitted from January 2016 to December 2019. All patients were treated with minimally invasive release of tendon knife. There were 32 males and 53 females, ranging in age from 15 to 37 years old, with an average age of (22.3±6.3) years old. Operation time, intraoperative blood loss, incision length, first postoperative ambulation time, complication rate, recurrence rate, and Harris hip score (HHS) were analyzed and evaluated.
RESULTS:
The average follow-up time was (16.2±4.6) months, ranging from 12 to 30 months. The operation time ranged from 7 to 15 min, with an average of (10.2±3.1) min. Intraoperative blood loss ranged from 2 to 20 ml, with an average of (8.4±2.2) ml. The incision length ranged from 0.6 to 2.0 cm, with an average of (0.8±0.3) cm. The time to postoperative ambulation ranged from 12 to 28 h, with an average of (20.0±3.2) h. All patients achieved primary wound healing without sciatic nerve injury or recurrence. HHS hip function scores ranged from 90 to 98, with an average score of (96.2±1.4). Complications included intraoperative tendon blade tip fracture in two cases (removed under fluoroscopic guidance) and subcutaneous hematoma in three cases-two resolved with compression and one with open evacuation.. Twenty-nine patients exhibited transient swaying gait postoperatively, of which 24 patients returned to normal after 4 weeks and 5 patients returned to normal after 6 weeks.
CONCLUSION
Minimally invasive tendon blade release is a safe and effective technique for treating gluteal muscle contracture, offering minimal trauma, rapid recovery, and excellent cosmetic and functional outcomes. However, it exhibits a low risk of blade tip fracture and sciatic nerve injury, warranting experienced surgical handling.
Humans
;
Male
;
Female
;
Adult
;
Minimally Invasive Surgical Procedures/methods*
;
Adolescent
;
Retrospective Studies
;
Buttocks/surgery*
;
Young Adult
;
Contracture/surgery*
;
Tendons/surgery*
;
Muscle, Skeletal/surgery*
5.Beneficial Effects of Dendrobium officinale Extract on Insomnia Rats Induced by Strong Light and Noise via Regulating GABA and GABAA Receptors.
Heng-Pu ZHOU ; Jie SU ; Ke-Jian WEI ; Su-Xiang WU ; Jing-Jing YU ; Yi-Kang YU ; Zhuang-Wei NIU ; Xiao-Hu JIN ; Mei-Qiu YAN ; Su-Hong CHEN ; Gui-Yuan LYU
Chinese journal of integrative medicine 2025;31(6):490-498
OBJECTIVE:
To explore the therapeutic effects and underlying mechanisms of Dendrobium officinale (Tiepi Shihu) extract (DOE) on insomnia.
METHODS:
Forty-two male Sprague-Dawley rats were randomly divided into 6 groups (n=7 per group): normal control, model control, melatonin (MT, 40 mg/kg), and 3-dose DOE (0.25, 0.50, and 1.00 g/kg) groups. Rats were raised in a strong-light (10,000 LUX) and -noise (>80 db) environment (12 h/d) for 16 weeks to induce insomnia, and from week 10 to week 16, MT and DOE were correspondingly administered to rats. The behavior tests including sodium pentobarbital-induced sleep experiment, sucrose preference test, and autonomous activity test were used to evaluate changes in sleep and emotions of rats. The metabolic-related indicators such as blood pressure, blood viscosity, blood glucose, and uric acid in rats were measured. The pathological changes in the cornu ammonis 1 (CA1) region of rat brain were evaluated using hematoxylin and eosin staining and Nissl staining. Additionally, the sleep-related factors gamma-aminobutyric acid (GABA), glutamate (GA), 5-hydroxytryptamine (5-HT), and interleukin-6 (IL-6) were measured using enzyme linked immunosorbent assay. Finally, we screened potential sleep-improving receptors of DOE using polymerase chain reaction (PCR) array and validated the results with quantitative PCR and immunohistochemistry.
RESULTS:
DOE significantly improved rats' sleep and mood, increased the sodium pentobarbital-induced sleep time and sucrose preference index, and reduced autonomic activity times (P<0.05 or P<0.01). DOE also had a good effect on metabolic abnormalities, significantly reducing triglyceride, blood glucose, blood pressure, and blood viscosity indicators (P<0.05 or P<0.01). DOE significantly increased the GABA content in hippocampus and reduced the GA/GABA ratio and IL-6 level (P<0.05 or P<0.01). In addition, DOE improved the pathological changes such as the disorder of cell arrangement in the hippocampus and the decrease of Nissel bodies. Seven differential genes were screened by PCR array, and the GABAA receptors (Gabra5, Gabra6, Gabrq) were selected for verification. The results showed that DOE could up-regulate their expressions (P<0.05 or P<0.01).
CONCLUSION
DOE demonstrated remarkable potential for improving insomnia, which may be through regulating GABAA receptors expressions and GA/GABA ratio.
Animals
;
Dendrobium/chemistry*
;
Rats, Sprague-Dawley
;
Male
;
Sleep Initiation and Maintenance Disorders/blood*
;
Plant Extracts/therapeutic use*
;
Receptors, GABA-A/metabolism*
;
Noise/adverse effects*
;
Light/adverse effects*
;
gamma-Aminobutyric Acid/metabolism*
;
Sleep/drug effects*
;
Rats
;
Receptors, GABA/metabolism*
6.Parkin inhibits iron overload-induced cardiomyocyte ferroptosis by ubiquitinating ACSL4 and modulating PUFA-phospholipids metabolism.
Dandan XIAO ; Wenguang CHANG ; Xiang AO ; Lin YE ; Weiwei WU ; Lin SONG ; Xiaosu YUAN ; Luxin FENG ; Peiyan WANG ; Yu WANG ; Yi JIA ; Xiaopeng TANG ; Jianxun WANG
Acta Pharmaceutica Sinica B 2025;15(3):1589-1607
Iron overload is strongly associated with heart disease. Ferroptosis is a new form of regulated cell death indicated in cardiac ischemia-reperfusion (I/R) injury. However, the specific molecular mechanism of myocardial injury caused by iron overload in the heart is still unclear, and the involvement of ferroptosis in iron overload-induced myocardial injury is not fully understood. In this study, we observed that ferroptosis participated in developing of iron overload and I/R-induced cardiomyopathy. Mechanistically, we discovered that Parkin inhibited iron overload-induced ferroptosis in cardiomyocytes by promoting the ubiquitination of long-chain acyl-CoA synthetase 4 (ACSL4), a crucial protein involved in ferroptosis-related lipid metabolism pathways. Additionally, we identified p53 as a transcription factor that transcriptionally suppressed Parkin expression in iron-overloaded cardiomyocytes, thereby regulating iron overload-induced ferroptosis. In animal studies, cardiac-specific Parkin knockout mice (Myh6-CreER T2 /Parkin fl/fl ) fed a high-iron diet presented more severe myocardial damage, and the high iron levels exacerbated myocardial I/R injury. However, the ferroptosis inhibitor Fer-1 significantly suppressed iron overload-induced ferroptosis and myocardial I/R injury. Moreover, Parkin effectively protected against impaired mitochondrial function and prevented iron overload-induced mitochondrial lipid peroxidation. These findings unveil a novel regulatory pathway involving p53-Parkin-ACSL4 in heart disease by inhibiting of ferroptosis.
7.Three-dimensional Heterogeneity and Intrinsic Plasticity of the Projection from the Cerebellar Interposed Nucleus to the Ventral Tegmental Area.
Chen WANG ; Si-Yu WANG ; Kuang-Yi MA ; Zhao-Xiang WANG ; Fang-Xiao XU ; Zhi-Ying WU ; Yan GU ; Wei CHEN ; Ying SHEN ; Li-Da SU ; Lin ZHOU
Neuroscience Bulletin 2025;41(1):159-164
9.A minimally invasive, fast on/off "odorgenetic" method to manipulate physiology.
Yanqiong WU ; Xueqin XU ; Shanchun SU ; Zeyong YANG ; Xincai HAO ; Wei LU ; Jianghong HE ; Juntao HU ; Xiaohui LI ; Hong YU ; Xiuqin YU ; Yangqiao XIAO ; Shuangshuang LU ; Linhan WANG ; Wei TIAN ; Hongbing XIANG ; Gang CAO ; Wen Jun TU ; Changbin KE
Protein & Cell 2025;16(7):615-620
10.Oxymatrine, a novel TLR2 agonist, promotes megakaryopoiesis and thrombopoiesis through the STING/NF-κB pathway.
Chengyang NI ; Ling ZHOU ; Shuo YANG ; Mei RAN ; Jiesi LUO ; Kui CHENG ; Feihong HUANG ; Xiaoqin TANG ; Xiang XIE ; Dalian QIN ; Qibing MEI ; Long WANG ; Juan XIAO ; Jianming WU
Journal of Pharmaceutical Analysis 2025;15(1):101054-101054
Radiation-induced thrombocytopenia (RIT) faces a perplexing challenge in the clinical treatment of cancer patients, and current therapeutic approaches are inadequate in the clinical settings. In this research, oxymatrine, a new molecule capable of healing RIT was screened out, and the underlying regulatory mechanism associated with magakaryocyte (MK) differentiation and thrombopoiesis was demonstrated. The capacity of oxymatrine to induce MK differentiation was verified in K-562 and Meg-01 cells in vitro. The ability to induce thrombopoiesis was subsequently demonstrated in Tg (cd41:enhanced green fluorescent protein (eGFP)) zebrafish and RIT model mice. In addition, we carried out network pharmacological prediction, drug affinity responsive target stability assay (DARTS) and cellular thermal shift assay (CETSA) analyses to explore the potential targets of oxymatrine. Moreover, the pathway underlying the effects of oxymatrine was determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, Western blot (WB), and immunofluorescence. Oxymatrine markedly promoted MK differentiation and maturation in vitro. Moreover, oxymatrine induced thrombopoiesis in Tg (cd41:eGFP) zebrafish and accelerated thrombopoiesis and platelet function recovery in RIT model mice. Mechanistically, oxymatrine directly binds to toll-like receptor 2 (TLR2) and further regulates the downstream pathway stimulator of interferon genes (STING)/nuclear factor-kappaB (NF-κB), which can be blocked by C29 and C-176, which are specific inhibitors of TLR2 and STING, respectively. Taken together, we demonstrated that oxymatrine, a novel TLR2 agonist, plays a critical role in accelerating MK differentiation and thrombopoiesis via the STING/NF-κB axis, suggesting that oxymatrine is a promising candidate for RIT therapy.

Result Analysis
Print
Save
E-mail