1.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
4.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
5.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
7.Curcumin promotes osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose environment by regulating HO-1
Xian-Ting WEI ; Bao-Kang CHEN ; Xin DONG ; Kang YAN ; Xiao-Ping ZHANG ; Bo LIAO
Journal of Regional Anatomy and Operative Surgery 2024;33(9):783-787
Objective To study the effect of curcumin on osteogenic differentiation of human bone marrow mesenchymal stem cells(hBMSCs)in high glucose condition and its mechanism.Methods The cultured hBMSCs were divided into the normal group,high glucose group,and high glucose+curcumin group.The early osteogenic differentiation level of the cells in each group was assessed by detecting alkaline phosphatase(ALP)activity.Alizarin red staining was used to evaluate the formation of mineralized nodules in the late stage of osteo-genic differentiation.The expression of osteogenic-related genes,including Runt-related transcription factor 2(Runx2),osteocalcin(OCN),and type Ⅰ collagen(COL-1),was detected by RT-PCR after 21 days of osteogenic induction.Western blot was used to detect the expression of heme oxygenase-1(HO-1)in each group.Furthermore,an HO-1 small interfering RNA(siRNA)model was constructed and its interference efficiency was assessed.The expression levels of osteogenesis-related proteins(Runx2,OCN,and COL-1)between the high glucose+curcumin group and high glucose+curcumin+siHO-1 group were compared.Results Compared with the normal group,the high glucose group showed decreased ALP activity,reduced formation of mineralized nodules,decreased expression of osteogenic-related genes(Runx2,OCN,and COL-1),and inhibited expression of HO-1(P<0.05).Compared with the empty vector group,the siHO-1 group showed significantly reduced expression of HO-1 in cells,indicating successful siRNA interference(P<0.01).Compared with the high glucose+curcumin group,the expression levels of osteogenesis-related proteins(OCN,COL-1,and Runx2)were all decreased in the high glucose+curcumin+siHO-1 group(P<0.05).Conclusion Curcumin can promote osteogenic differentiation of hBMSCs under high glucose environment,which is related to the expression of HO-1.
8.A Novel Trifluoromethyl Quinazoline Compound Inhibits Drug-resistant Glioblastoma Cells Proliferation
Xiao-Zhong CHEN ; Shi-Nan WEI ; Heng LUO ; Peng ZHANG ; Ping SUN ; Bao-Fei SUN
Chinese Journal of Biochemistry and Molecular Biology 2024;40(9):1250-1261
The current treatment of glioma is facing drug resistance,which limits the efficacy of traditional chemotherapy drugs.This study aims to explore the potential mechanisms of the trifluoromethylquinazoline compound(KZL204)against glioma.Through the Cell Counting Kit-8(CCK-8)assay,we found that KZL204 significantly inhibits the growth of drug-resistant cancer cells,with a 48-hour half-maximal inhibitory concentration(IC50)of 3.63±0.38 μmol/L,which is significantly better than the positive control drug temozolomide(TMZ)(IC50 value of 81.67±5.49 μmol/L).Additionally,flow cytometry analysis showed that KZL204 treatment significantly increased the apoptosis rate of drug-resistant tumor cells and arrested the cell cycle at the G2/M phase.At the same time,the Transwell assay confirmed the inhibitory effect of KZL204 on the migration and invasion of drug-resistant cancer cells.Transcriptome analysis revealed 2 435 differentially expressed genes in drug-resistant cancer cells treated with KZL204,of which 1 320 were upregulated,and 1 115 were downregulated.KEGG and GO enrichment analysis showed that these differential genes were significantly enriched in apoptosis-related signaling pathways.Further bioinformatics prediction and Venn diagram analysis identified 35 potential core targets,with the PI3K-AKT signaling pathway being the most significant among the differentially expressed genes.Quantitative real-time PCR(RT-qPCR)experiments confirmed the downregulating effects of KZL204 on genes such as CREB3L1,CSF1,CXCL5,BCL3,and the upregulating effects on genes like FOS,LT A,PTGS2,MAP2K3.Immunoblotting experiments at the protein level also confirmed the impact of KZL204 on the expression of apoptotic proteins,including the upregulation of Bax,cleaved Caspase-3 protein,and the downregulation ofAKT,Bcl-2,Caspase-3,and Caspase-8 protein expression.In summary,KZL204 significantly inhibits the growth and metastasis of drug-resistant glioblastoma and induces apoptosis and cell cycle arrest by regulating the PI3K-AKT and apoptosis-related signaling pathways,demonstrating its potential as a candidate drug against drug-resistant glioma.
9.Effects of Shenxiao Jiedu Tongluo Recipe on AIM2-mediated pyroptosis of renal cells in a golden hamster model of diabetic nephropathy
Yu-Peng XIAO ; Ying-Jun DING ; Bao-Zhu DING ; Shu-Jie HOU ; Si-Yang LIU ; Zi-Wei ZHANG ; Xiao-Xia LI ; Wen-Jie LIANG ; Nan ZHANG
Chinese Traditional Patent Medicine 2024;46(11):3603-3612
AIM To investigate the effects and mechanism of Shenxiao Jiedu Tongluo Recipe on renal AIM 2-mediated pyroptosis of a golden hamster model of diabetic nephropathy(DN).METHODS Fifty male golden hamsters of SPF grade were randomly divided into the control group and the model group.The golden hamsters of the model group successfully developed into DN models by feeding of high glucose and high fat diet and intraperitoneal injection of STZ were further randomly assigned into the model group,the enagliflozin group(10 mg/kg),and the low-dose and the high-dose Shenxiao Jiedu Tongluo Recipe groups(12.8,25.6 g/kg)for 8 weeks gavage of the corresponding administration.The golden hamsters had their levels of fasting blood glucose,24 h-UTP,serum TC,LDL-C,Scr,and Sur detected by automatic biochemical analyzer;their serum SOD activity and MDA level detected by biochemical method;their serum levels of IL-1β,IL-18,and TNF-α detected by ELISA method;their pathomorphological changes of kidney tissue observed by HE and PAS staining;their protein expressions of ROS and γH2AX detected by immunofluorescence or immunohistochemistry;and their renal protein expressions of AIM 2,caspase-1 and GSDMD detected by Western blot and immunohistochemistry.RESULTS Compared with the control group,the model group showed atrophic glomeruli;enlarged glomerular capsule cavity;mesangial expansion;edema and necrosis in the dilated renal tubules;increased levels of fasting blood glucose,24 h-UTP,serum TC,LDL-C,Scr,Sur,IL-1β,IL-18,TNF-α,MDA and renal protein expressions of ROS,γH2AX,AIM2,caspase-1,GSDMD(P<0.01);and decreased serum SOD activity(P<0.01).Compared with the model group,the high-dose Shenxiao Jiedu Tongluo Recipe group and the enagliflozin group displayed improved renal histopathology,decreased levels of 24 h-UTP,serum TC,LDL-C,Scr,Sur,IL-1β,IL-18,TNF-α,MDA and renal protein expressions of ROS,γH2AX,AIM2,caspase-1,GSDMD(P<0.05,P<0.01);and increased serum SOD activity(P<0.01).CONCLUSION Shenxiao Jiedu Tongluo Recipe can inhibit AIM 2-mediated cell death and alleviate renal inflammatory damage in golden hamsters by inhibiting their expression of ROS-dsDNA-AIM 2 signal pathway to attain reduction of their renal ROS level,DNA damage of renal intrinsic cells,and synthesis of AIM 2 inflammatory corpuscles as well.
10.Design and implementation of high precision ear pulse wave physiological signal detection device for human centrifuge training
Ke JIANG ; Ming-Hao YANG ; Hai-Xia WANG ; Bao-Hui LI ; Jing-Hui YANG ; Xiao-Xue ZHANG ; Zhong-Zheng GUO ; Xiao-Yang WEI
Chinese Medical Equipment Journal 2024;45(9):35-40
Objective To design and implement a high-precision ear pulse wave physiological signal detection device for human centrifuge training to solve the problems in measurement and calibration of pilot ear pulse wave signal during human centrifuge training.Methods The high-precision ear pulse wave physiological signal detection device was composed of an ear pulse wave acquisition sensor,a signal acquisition and control unit and a host signal processing module.The ear pulse wave acquisition sensor had an ear-clip-like shape and consisted of an outer shell,an inner shell and an elastic steel plate;the signal acquisition and control unit was made up of an power supply module,a constant voltage module for the light source,a signal acquisition module,a master control module and a data transmission module,which had its software developed with an embedded system;the host signal processing module divided the signal processing into 2 phases of signal pre-processing and pulse wave signal monitoring and display.The detection performance of the device was verified by using a physiological electrical signal calibrator to test the ear pulse wave signals detected with the device;the effectiveness and stability of the device were validated by implementing human centrifuge training experiments with different loads.Results The voltage measurement error,amplitude-frequency characteristics and common mode rejection ratio detected by this device were all within the permitted ranges of JJG 760-2003 Verification Regulation for Electro Cardiac Monitor and JJG 954-2019 Verification Regulation of Digital Electroencephalographs;the device was capable of detecting the ear pulse wave signals of pilot during human centrifuge training in real time with little interference from motion and stable signal quality.Conclusion The device can accurately clarify the changes in the amplitude of the pilot's ear pulse wave during human centrifuge training and effectively reflect the changes in the pilot's cerebral blood flow under positive acceleration.[Chinese Medical Equipment Journal,2024,45(9):35-40]

Result Analysis
Print
Save
E-mail