1.Research progress on the application of visual electrophysiological examination in early diagnosis of glaucoma
Chang SUN ; Rong ZHANG ; Xiaolin XIAO ; Minpeng XU ; Dong MING ; Xia HUA
International Eye Science 2025;25(7):1073-1078
Glaucoma is a group of optic nerve disorders characterized by progressive optic nerve atrophy and visual field defects, which can lead to irreversible blindness. Early diagnosis of glaucoma is essential for preventing visual loss. However, due to the absence of obvious early symptoms, the diagnosis of glaucoma remains challenging. Visual electrophysiological examinations, an objective approach for evaluating visual function, have the potential to be used in the early diagnosis of glaucoma. This review integrates the latest publications to introduce visual electrophysiological examination techniques, including electroretinography(ERG)and visual evoked potential(VEP). It also explores the mechanisms underlying these techniques and their application value in the early diagnosis of glaucoma. In addition, this review summarizes the advantages, limitations, and applicable scenarios of different visual electrophysiological techniques. Finally, the review provides an outlook on the development prospects of visual electrophysiological techniques in the early diagnosis of glaucoma. The findings of this review can assist clinicians in selecting appropriate diagnostic methods, promote the innovation and development of early visual electrophysiological diagnostic techniques for glaucoma, and contribute to reducing the risk of blindness caused by glaucoma.
2.Progress on the mechanism and application of hyperbaric oxygen therapy for neurodegenerative diseases.
Fang-Fang WANG ; Nan WANG ; Heng-Rong YUAN ; Ji XU ; Jun MA ; Xiao-Chen BAO ; Yi-Qun FANG
Acta Physiologica Sinica 2025;77(2):318-326
In 2040, neurodegenerative diseases (NDD) will overtake cancer as the second leading cause of death after cardiovascular and cerebrovascular diseases. Therefore, the search for effective intervention measures has become the top priority to deal with this difficult burden. Hyperbaric oxygen therapy (HBOT) has been used for the past 50 years to treat conditions such as decompression sickness, carbon monoxide poisoning and radiation damage. In recent years, studies have confirmed that HBOT has good effects in improving cognitive impairment after brain injury and stroke, and alleviating neurodegeneration and dysfunction related to NDD. Here we reviewed the pathogenesis and treatment state of NDD, introduced the application of HBOT in animal models and clinical studies of NDD, and expounded the application potential of HBOT in the treatment of NDD from the perspective of mitochondrial function, neuroinflammation, neurogenesis and angiogenesis, oxidative stress, apoptosis, microcirculation and epigenetics.
Hyperbaric Oxygenation
;
Humans
;
Neurodegenerative Diseases/physiopathology*
;
Animals
;
Oxidative Stress
;
Apoptosis
;
Mitochondria/physiology*
;
Neurogenesis
;
Epigenesis, Genetic
3.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
4.Research progress in effect of traditional Chinese medicine on aerobic glycolysis in colorectal cancer.
Xu MA ; Sheng-Long LI ; Guang-Rong ZHENG ; Da-Cheng TIAN ; Gang-Gang LU ; Jie GAO ; Yu-Qi AN ; Li-Yuan CAO ; Liang LI ; Xiao-Yong TANG
China Journal of Chinese Materia Medica 2025;50(6):1496-1506
Colorectal cancer(CRC) is a common malignant tumor worldwide. Due to the treatment intolerance and side effects, CRC rank the top among various cancers regarding the incidence and mortality rates. Therefore, exploring new therapies is of great significance for the treatment of CRC. Aerobic glycolysis(AEG) plays an important role in the microenvironment formation, proliferation, metastasis, and recurrence of CRC and other tumor cells. It has been confirmed that intervening in the AEG pathway can effectively curb CRC. The active ingredients and compound prescriptions of traditional Chinese medicine(TCM) can effectively inhibit the proliferation, metastasis, and drug resistance and regulate the apoptosis of tumor cells by modulating AEG-associated transport proteins [eg, glucose transporters(GLUT)], key enzymes [hexokinase(HK) and phosphofructokinase(PFK)], key genes [hypoxia-inducible factor 1(HIF-1) and oncogene(c-Myc)], and signaling pathways(MET/PI3K/Akt/mTOR). Accordingly, they can treat CRC, reduce the recurrence, and improve the prognosis of CRC. Although AEG plays a key role in the development and progression of CRC, the specific mechanisms are not yet fully understood. Therefore, this article delves into the intrinsic connection of the targets and mechanisms of the AEG pathway with CRC from the perspective of tumor cell glycolysis and explores how active ingredients(oxymatrine, kaempferol, and dioscin) and compound prescriptions(Quxie Capsules, Jiedu Sangen Decoction, and Xianlian Jiedu Prescription) of TCM treat CRC by intervening in the AEG pathway. Additionally, this article explores the shortcomings in the current research, aiming to provide reliable targets and a theoretical basis for treating CRC with TCM.
Humans
;
Colorectal Neoplasms/genetics*
;
Drugs, Chinese Herbal/therapeutic use*
;
Glycolysis/drug effects*
;
Animals
;
Medicine, Chinese Traditional
;
Signal Transduction/drug effects*
5.Analysis of clinical characteristics and influencing factors of patients with postmenopausal osteoporosis combined with dyslipidemia.
Rong XIE ; Li-Guo ZHU ; Zi-Kai JIN ; Tian-Xiao FENG ; Ke ZHAO ; Da WANG ; Ling-Hui LI ; Xu WEI
China Journal of Orthopaedics and Traumatology 2025;38(5):487-493
OBJECTIVE:
To explore the co-morbid influencing factors of postmenopausal osteoporosis(PMOP) and dyslipidemia, and to provide evidence-based basis for clinical co-morbidity management.
METHODS:
Based on the 2017 to 2018 Beijing community cross-sectional survey data, PMOP patients were included and divided into the dyslipidemia group and the uncomplicated dyslipidemia group according to whether they were comorbid with dyslipidemia. Demographic characteristics, living habits and disease history were collected through questionnaires, and bone mineral density and bone metabolism biomarkers (osteocalcin, blood calcium, serum typeⅠprocollagen N-terminal prepeptide, etc.) were detected on site. Co-morbidity risk factors were analyzed using binary logistic regression.
RESULTS:
Three hundred and twenty patients with PMOP were included, including the comorbid group (75 patients) and the uncomplicated group (245 patients). The results showed that history of cardiovascular disease [OR=1.801, 95%CI(1.003, 3.236), P=0.049], history of cerebrovascular disease [OR=2.923, 95%CI(1.460, 5.854), P=0.002], frying and cooking methods[OR=5.388, 95%CI(1.632, 17.793), P=0.006], OST results[OR=0.910, 95%CI(0.843, 0.983), P=0.016], and blood Ca results [OR=60.249, 95%CI(1.862, 1 949.926), P=0.021] were the influencing factors of PMOP complicated with dyslipidemia.
CONCLUSION
Focus should be placed on the influencing factors of PMOP and dyslipidemia co-morbidities, with emphasis on multidimensional assessment, combining lifestyle interventions with bone metabolism marker monitoring to optimize co-morbidity management.
Humans
;
Dyslipidemias/epidemiology*
;
Female
;
Middle Aged
;
Osteoporosis, Postmenopausal/metabolism*
;
Aged
;
Cross-Sectional Studies
;
Risk Factors
;
Bone Density
6.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
7.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
8.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic
9.Explanation and interpretation of blood transfusion provisions for children undergoing cardiac surgery in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Jin-Ping LIU
Chinese Journal of Contemporary Pediatrics 2025;27(7):778-785
To guide clinical blood transfusion practices in pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Children undergoing cardiac surgery are at high risk of bleeding, and the causes of perioperative anemia and coagulation disorders in neonates and children are complex and varied, often necessitating the transfusion of allogeneic blood components. This guideline provides direction and recommendations for specific measures in blood management for children undergoing cardiac surgery before, during, and after surgery. This article interprets the background and evidence for the formulation of the blood transfusion provisions for children undergoing cardiac surgery, hoping to facilitate the understanding and implementation of this guideline.
Humans
;
Cardiac Surgical Procedures
;
Blood Transfusion/standards*
;
Child
;
Practice Guidelines as Topic
10.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*

Result Analysis
Print
Save
E-mail