1.PANoptosis: a New Target for Cardiovascular Diseases
Xin-Nong CHEN ; Ying-Xi YANG ; Xiao-Chen GUO ; Jun-Ping ZHANG ; Na-Wen LIU
Progress in Biochemistry and Biophysics 2025;52(5):1113-1125
The innate immune system detects cellular stressors and microbial infections, activating programmed cell death (PCD) pathways to eliminate intracellular pathogens and maintain homeostasis. Among these pathways, pyroptosis, apoptosis, and necroptosis represent the most characteristic forms of PCD. Although initially regarded as mechanistically distinct, emerging research has revealed significant crosstalk among their signaling cascades. Consequently, the concept of PANoptosis has been proposed—an inflammatory cell death pathway driven by caspases and receptor-interacting protein kinases (RIPKs), and regulated by the PANoptosome, which integrates key features of pyroptosis, apoptosis, and necroptosis. The core mechanism of PANoptosis involves the assembly and activation of the PANoptosome, a macromolecular complex composed of three structural components: sensor proteins, adaptor proteins, and effector proteins. Sensors detect upstream stimuli and transmit signals downstream, recruiting critical molecules via adaptors to form a molecular scaffold. This scaffold activates effectors, triggering intracellular signaling cascades that culminate in PANoptosis. The PANoptosome is regulated by upstream molecules such as interferon regulatory factor 1 (IRF1), transforming growth factor beta-activated kinase 1 (TAK1), and adenosine deaminase acting on RNA 1 (ADAR1), which function as molecular switches to control PANoptosis. Targeting these switches represents a promising therapeutic strategy. Furthermore, PANoptosis is influenced by organelle functions, including those of the mitochondria, endoplasmic reticulum, and lysosomes, highlighting organelle-targeted interventions as effective regulatory approaches. Cardiovascular diseases (CVDs), the leading global cause of morbidity and mortality, are profoundly impacted by PCD. Extensive crosstalk among multiple cell death pathways in CVDs suggests a complex regulatory network. As a novel cell death modality bridging pyroptosis, apoptosis, and necroptosis, PANoptosis offers fresh insights into the complexity of cell death and provides innovative strategies for CVD treatment. This review summarizes current evidence linking PANoptosis to various CVDs, including myocardial ischemia/reperfusion injury, myocardial infarction, heart failure, arrhythmogenic cardiomyopathy, sepsis-induced cardiomyopathy, cardiotoxic injury, atherosclerosis, abdominal aortic aneurysm, thoracic aortic aneurysm and dissection, and vascular toxic injury, thereby providing critical clinical insights into CVD pathophysiology. However, the current understanding of PANoptosis in CVDs remains incomplete. First, while PANoptosis in cardiomyocytes and vascular smooth muscle cells has been implicated in CVD pathogenesis, its role in other cell types—such as vascular endothelial cells and immune cells (e.g., macrophages)—warrants further investigation. Second, although pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are known to activate the PANoptosome in infectious diseases, the stimuli driving PANoptosis in CVDs remain poorly defined. Additionally, methodological challenges persist in identifying PANoptosome assembly in CVDs and in establishing reliable PANoptosis models. Beyond the diseases discussed, PANoptosis may also play a role in viral myocarditis and diabetic cardiomyopathy, necessitating further exploration. In conclusion, elucidating the role of PANoptosis in CVDs opens new avenues for drug development. Targeting this pathway could yield transformative therapies, addressing unmet clinical needs in cardiovascular medicine.
2.Life's Essential 8 cardiovascular health metrics and long-term risk of cardiovascular disease at different stages: A multi-stage analysis.
Jiangtao LI ; Yulin HUANG ; Zhao YANG ; Yongchen HAO ; Qiuju DENG ; Na YANG ; Lizhen HAN ; Luoxi XIAO ; Haimei WANG ; Yiming HAO ; Yue QI ; Jing LIU
Chinese Medical Journal 2025;138(5):592-594
3.Characterization and features of dampness-heat obstruction syndrome in rats with knee osteoarthritis based on "disease-syndrome-symptom" combination research strategy.
Li-Li WANG ; Teng-Teng XU ; Xiao-Xiao WANG ; Qun LI ; Li-Ting XU ; Wei-Heng CHEN ; Chun-Fang LIU ; Na LIN
China Journal of Chinese Materia Medica 2025;50(7):1861-1871
A combination of the "disease-syndrome-symptom" approach was used to study the syndrome characterization and features of dampness-heat obstruction syndrome in papain-induced knee osteoarthritis(KOA) model rats during the disease process. Forty-eight male SD rats were randomly divided into sham and model groups. The KOA model was established by injecting a mixture of papain and L-cysteine into the joint cavity on days 1, 3, and 5. During the 8 weeks following model establishment, the rats were assessed weekly for the plantar mechanical pain threshold, knee joint diameter, local skin temperature of the knee joint, weight-bearing difference between the two hind feet, and the modified Lequesne MG score of the knee joint. Samples were collected at 1, 2, 4, 6, and 8 weeks after model establishment to observe the gross lesions in cartilage and synovium. Histopathological changes in joint tissues were examined using hematoxylin-eosin, Masson's trichrome, and Senna red O-solid green staining. ELISA and immunohistochemical analysis were performed to detect the levels of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α, prostaglandin E2(PGE2), and the expression of aquaporins(AQP) 1 and 3 in serum and synovium. The results showed that the ink score of articular cartilage in the model group significantly increased from 4 to 8 weeks, the cartilage Mankin's score and the percentage of Masson-positive area in cartilage increased significantly from 1 to 8 weeks. The percentage of red-stained area for cartilage proteoglycans decreased significantly from 1 to 8 weeks. The synovitis score from 1 to 6 weeks and the percentage of blue-stained collagen fibers in the synovium from 1 to 8 weeks increased significantly, with statistically significant differences compared to the sham group. The mechanical pain threshold in the model group significantly decreased from 1 to 8 weeks, the knee joint diameter significantly increased from 1 to 6 weeks, and the local skin temperature of the knee joint, the weight-bearing difference between the two hind feet, and the modified Lequesne MG score from 1 to 5 weeks significantly increased, all with statistically significant differences compared to the sham group. The levels of IL-1β, IL-6, TNF-α, and PGE2 in serum and synovium of the model group significantly increased from 1 to 6 weeks. Serum TNF-α and PGE2, and synovial IL-1β, also significantly increased at 8 weeks. The levels of cartilage AQP1 and AQP3 significantly increased from 1 to 4 weeks, while synovial AQP1 and AQP3 increased significantly from 1 to 6 weeks, with all differences statistically significant compared to the sham group. In conclusion, papain-induced KOA rats exhibited pathological changes, including articular cartilage degeneration and synovial inflammation, within 1 week of induction. The KOA rats showed characteristics of dampness-heat obstruction syndrome, such as joint pain, swelling, elevated skin temperature, and decreased function, as well as increased inflammatory factors and AQP1、AQP3 in serum and joint tissues within 5 to 6 weeks of disease onset. These results provide an experimental model for studying the syndromes of KOA with dampness-heat obstruction syndrome.
Animals
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Osteoarthritis, Knee/physiopathology*
;
Disease Models, Animal
;
Humans
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Knee Joint/pathology*
4.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
5.Aldolase A accelerates hepatocarcinogenesis by refactoring c-Jun transcription.
Xin YANG ; Guang-Yuan MA ; Xiao-Qiang LI ; Na TANG ; Yang SUN ; Xiao-Wei HAO ; Ke-Han WU ; Yu-Bo WANG ; Wen TIAN ; Xin FAN ; Zezhi LI ; Caixia FENG ; Xu CHAO ; Yu-Fan WANG ; Yao LIU ; Di LI ; Wei CAO
Journal of Pharmaceutical Analysis 2025;15(7):101169-101169
Hepatocellular carcinoma (HCC) expresses abundant glycolytic enzymes and displays comprehensive glucose metabolism reprogramming. Aldolase A (ALDOA) plays a prominent role in glycolysis; however, little is known about its role in HCC development. In the present study, we aim to explore how ALDOA is involved in HCC proliferation. HCC proliferation was markedly suppressed both in vitro and in vivo following ALDOA knockout, which is consistent with ALDOA overexpression encouraging HCC proliferation. Mechanistically, ALDOA knockout partially limits the glycolytic flux in HCC cells. Meanwhile, ALDOA translocated to nuclei and directly interacted with c-Jun to facilitate its Thr93 phosphorylation by P21-activated protein kinase; ALDOA knockout markedly diminished c-Jun Thr93 phosphorylation and then dampened c-Jun transcription function. A crucial site Y364 mutation in ALDOA disrupted its interaction with c-Jun, and Y364S ALDOA expression failed to rescue cell proliferation in ALDOA deletion cells. In HCC patients, the expression level of ALDOA was correlated with the phosphorylation level of c-Jun (Thr93) and poor prognosis. Remarkably, hepatic ALDOA was significantly upregulated in the promotion and progression stages of diethylnitrosamine-induced HCC models, and the knockdown of A ldoa strikingly decreased HCC development in vivo. Our study demonstrated that ALDOA is a vital driver for HCC development by activating c-Jun-mediated oncogene transcription, opening additional avenues for anti-cancer therapies.
6.Comparative Transcriptomic and Metabolomic Analyses Reveal the Mechanism by Which Foam Macrophages Restrict Survival of Intracellular Mycobacterium Tuberculosis.
Xiao PENG ; Yuan Yuan LIU ; Li Yao CHEN ; Hui YANG ; Yan CHANG ; Ye Ran YANG ; Xuan ZHANG ; An Na JIA ; Yong Bo YU ; Yong Li GUO ; Jie LU
Biomedical and Environmental Sciences 2025;38(7):781-791
OBJECTIVES:
This study aimed to investigate the impact of foam macrophages (FMs) on the intracellular survival of Mycobacterium tuberculosis (MTB) and identify the molecular mechanisms influencing MTB survival.
METHODS:
An in vitro FM model was established using oleic acid induction. Transcriptomic and metabolomic analyses were conducted to identify the key molecular pathways involved in FM-mediated MTB survival.
RESULTS:
Induced FMs effectively restricted MTB survival. Transcriptomic and metabolomic profiling revealed distinct changes in gene and metabolite expression in FMs during MTB infection compared with normal macrophages. Integrated analyses identified significant alterations in the cyclic adenosine monophosphate (cAMP) signaling pathway, indicating that its activation contributes to the FM-mediated restriction of MTB survival.
CONCLUSIONS
FMs inhibit MTB survival. The cAMP signaling pathway is a key contributor. These findings enhance the understanding of the role of FMs in tuberculosis progression, suggest potential targets for host-directed therapies, and offer new directions for developing diagnostic and therapeutic strategies against tuberculosis.
Mycobacterium tuberculosis/physiology*
;
Transcriptome
;
Metabolomics
;
Foam Cells/microbiology*
;
Humans
;
Metabolome
;
Tuberculosis/microbiology*
;
Gene Expression Profiling
7.Therapeutic effects of paeoniflorin on thromboangiitis obliterans model rats by regulating PI3K/AKT/NF-κB signaling pathway
Ya-Na WANG ; Xiao-Lin XU ; Wen-Hua MA ; Luo-Fang CUI ; Li LIU ; Lin-Li XU ; Yan ZHANG ; Xiu-Lei ZHAO
The Chinese Journal of Clinical Pharmacology 2024;40(6):854-858
Objective To investigate the therapeutic effect and mechanism of paeoniflorin(PAE)on thrombosis angiitis obliterans(TAO)in rats.Methods TAO rat model was established by sodium laurate injection.Rats were randomly divided into sham operation group(intraperitoneal injection of 0.9%NaCl),model group(intraperitoneal injection of 0.9%NaCl),experimental-L,-H groups(intraperitoneal injection of PAE 5,20 mg·kg-1·d-1),experimental-H+agonist group(intraperitoneal injection of 20 mg·kg-1·d-1 PAE+caudal vein injection of 10 ng·mL-1·kg 1·d-1 740 Y-P).Thrombin time(TT)was measured by magnetic bead coagulation;the levels of interleukin(IL)-1 β and endothelin 1(ET-1)were detected by enzyme-linked immunosorbent assay kit;the expression levels of phosphatidylinositol 3-kinase(PI3K),phosphorylated-PI3K(p-PI3 K),protein kinase B(AKT),p-AKT,nuclear factor(NF)-κB p65,p-NF-κB p65 were detected by Western blotting.Results The TT of sham operation group,model group,experimental-L,-H groups and experimental-H+agonist group were(14.88±1.32),(10.02±0.95),(12.65±1.22),(14.70±1.36)and(10.64±1.21)s;IL-1β were(154.23±13.45),(356.69±31.17),(268.62±23.58),(199.64±20.87)and(337.48±31.46)pg·mL-1;ET-1 were(6.78±0.68),(14.43±1.14),(11.23±1.07),(8.20±0.81)and(13.33±1.27)pg·mL-1;p-PI3K/PI3K were 0.36±0.04,0.76±0.07,0.59±0.05,0.44±0.04 and 0.69±0.07;p-AKT/AKT were 0.52±0.05,0.90±0.09,0.74±0.08,0.61±0.06 and 0.86±0.08;p-NF-κB p65/NF-κB p65 were 0.28±0.03,0.95±0.04,0.69±0.07,0.35±0.05 and 0.87±0.08,respectively.There were statistically significant differences between model group and sham operation group(all P<0.05);the above indexes in experimental-L group and experimental-H group were significantly different from those in medel group(all P<0.05);the above indexes in experimental-H+agonist group were significantly different from those in experimental-H group(all P<0.05).Conclusion PAE may improve disease progression in TAO rats by inhibiting the PI3K/AKT/NF-κB signaling pathway.
8.Bioequivalence study of rasagiline mesylate tablets in Chinese healthy subjects
Gang CHEN ; Xiao-Lin WANG ; Si-Qi ZANG ; Ze-Juan WANG ; Xiao-Na LIU ; Ai-Hua DU ; Min LI ; Ya-Nan ZHANG ; Dan ZHANG ; Li-Na ZHANG ; Jin WANG
The Chinese Journal of Clinical Pharmacology 2024;40(19):2885-2890
Objective To study the pharmacokinetics and bioequivalence of two formulations of rasagiline mesylate tablets in healthy subjects under fasting and fed conditions.Methods The two-period,two-sequence,crossover study design was adopted in the fasting study.Thirty-six subjects were enrolled and given either test preparation or reference preparation 1 mg respectively in two periods.After collecting plasma samples,the plasma concentration of rasagiline was determined by liquid chromatography-tandem mass spectrometry(LC-MS/MS)and the bioequivalence was evaluated using the average bioequivalence(ABE)method.The four-period,two-sequence,fully replicate crossover study design was adopted in the fed study.Forty-eight subjects were enrolled and given the test preparation or the reference preparation at a dose of 1 mg twice respectively in four periods.According to the degree of intra-individual variation of Cmax,AUC0-t and AUC0-∞,the equivalence was evaluated using the reference-scaled average bioequivalence and ABE method,respectively.Results In the fasting study,the pharmacokinetic parameters of rasagiline of the test and reference preparation were as follow:Cmax were(9.70±3.14)and(9.62±3.85)ng·mL-1,AUC0-t were(6.03±1.47)and(6.02±1.95)ng·h·mL-1,AUC0-∞ were(6.13±1.51)and(6.12±1.97)ng·h·mL-1.The 90%confidence interval(CI)of the geometric mean ratio(GMR)were 94.11%-118.06%,99.22%-107.74%and 99.16%-107.44%for Cmax,AUC0-t and AUC0-∞,respectively,which were within the acceptance criteria of 80.00%-125.00%.In the fed study,the pharmacokinetic parameters of rasagiline of the test and reference preparation were as follow:Cmax were(3.00±1.92)and(3.52±1.77)ng·mL-1,AUC0_t were(5.02±1.20)and(5.06±1.20)ng·h·mL-1,AUC0-∞ were(5.11±1.23)and(5.14±1.22)ng·h·mL-1.The 90%CI of GMR were 96.99%-101.19%and 97.17%-101.41%for AUC0-t and AUC0-∞,which were within the acceptance criteria of 80.00%-125.00%.The 95%upper confidence bound of Cmax for were less than"0",and the point estimate of GMR were within the acceptance criteria of 80.00%-125.00%.The incidence of adverse events in fasting and fed studies was 22.86%and 22.92%,respectively,and all adverse events were moderate to mild.Conclusion The two rasagiline mesylate tablets were bioequivalent,and both the formulations were well tolerated.
9.Identification and expression analysis of flavonoid O -methyltransferase gene family in Polygonum capitatum
Jiang-li LUO ; Chang LIU ; Xian-fa ZENG ; Na-na WU ; Xiao-xue WANG ; Ying TANG ; Xiang PU
Acta Pharmaceutica Sinica 2024;59(5):1467-1477
italic>Polygonum capitatum is a characteristic Miao medicine in Guizhou, commonly used in clinical practice to treat gastrointestinal and urinary tract infections. Research has found that it has good antibacterial and anti-inflammatory effects, and its main active ingredient is flavonoids. Lavonoid
10.Heterologous expression and product identification of diterpene synthase involved in the biosynthesis of brasilicardin A
Xiang-yu GE ; Guang-xin ZHOU ; Na XIONG ; Zi-han LU ; Xin-yu MI ; Zhi-xiang ZHU ; Xiao LIU ; Xiao-hui WANG ; Juan WANG ; She-po SHI
Acta Pharmaceutica Sinica 2024;59(7):2161-2170
Brasilicardin A, a diterpene glycoside isolated from pathogenic actinomycete

Result Analysis
Print
Save
E-mail