1.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
4.Effects of Radix Angelica sinensis and Radix Hedysari ultrafiltration on oxidative stress and inflammatory damage of HUVECs induced by ionizing radiation and its mechanism
Li-Rong WANG ; Ling-Yun WANG ; Xiao-Jing LI ; Hui-Lin ZHAO ; Yao-Hui HUO ; Hui CHAI ; Kai LIU
Chinese Pharmacological Bulletin 2024;40(8):1501-1509
Aim To investigate the effects of Radix Angelica Sinensis and Radix Hedysari ultrafiltration(RAS-RH)on oxidative stress and inflammatory injury of human umbilical vein endothelial cells(HUVECs)induced by ionizing radiation.Methods The model of HUVECs damage induced by 6 Gy X-rays was estab-lished.HUVECs were treated with different concentra-tions of RAS-RH(100,200,400 μg·L-1).The proliferative activity of HUVECs was detected by CCK-8 method,the structural changes of mitochondria were observed by transmission electron microscope,the level of ROS was detected by DCFH-DA probe,the change of intracellular mitochondrial membrane potential was detected by JC-1 kit,and the apoptosis and cycle were detected by flow cytometry.The contents of IL-6 and TNF-α in cells were detected by ELISA.The activities of MDA,CAT,SOD and GSH-PX were detected by biochemical kit.The gene expression levels of Nrf2,HO-1,NF-κB,eNOS and IL-6 were detected by qRT-PCR,and the expression levels of Nrf2,HO-1,eNOS,NF-κB,p-NF-κB and IL-6 protein were detected by Western blot.Results Compared with the model group,RAS-RH could increase the activity of HUVECs induced by ionizing radiation,decrease the rate of ap-optosis,decrease the level of intracellular ROS,re-duce the injury of intracellular mitochondria,increase the level of mitochondrial membrane potential,promote the expression of Nrf2,HO-1 and eNOS,and inhibit the expression of NF-κB and IL-6.Conclusions RAS-RH has anti-radiation,antioxidant and anti-in-flammatory effects,which may reduce the oxidative stress and inflammatory damage of HUVECs induced by ionizing radiation by activating the activity of Nrf2/HO-1 signal pathway,thus promoting the activity of cell proliferation.
5.Observation of the effect of single dose intravenous infusion of tranexamic acid on white blood cell,erythrocyte sedi-mentation rate and C-reactive protein after double segmental posterior lumbar interbody fusion
Shen-Shen HAO ; Xiao-Long AN ; Sheng-Li DONG ; Shuai LIU ; Hong-Ke LI ; Peng-Cheng WANG ; Shao-Min ZHANG ; Kai KANG
China Journal of Orthopaedics and Traumatology 2024;37(10):978-984
Objective To observe the safety and effectiveness of single dose intravenous infusion of tranexamic acid(TX-A)in dual level posterior lumbar interbody fusion(PLIF),and to explore the changes and trends in perioperative white blood cell(WBC),erythrocyte sedimentation rate(ESR),and C-reactive protein(CRP).Methods Between October 2020 and September 2022,46 patients with lumbar degenerative disease were treated with dual level PLIF,including 18 males and 28 females,with an average age of(60.24±10.68)years old,from 34 to 80 years old.They were divided into observation group and control group according to different treatment methods.There were 28 patients in the observation group,including 12 males and 16 females,with an average age of(61.04±9.03)years old.There were 3 cases with lumbar disc herniation(LDH),lumbar spinal stenosis(LSS)18 cases,lumbar spondylolisthesis(LS)7 cases.TXA(1 g/100 ml)was administered intravenously 15 min before skin incision after general anesthesia.The control group consisted of 18 patients,including 6 males and 12 females,with an average age of(59.00±13.04)years old.There were 5 cases with LDH,LSS 9 cases,LS 4 cases,and TXA was not used.The operation time,intraoperative bleeding volume,postoperative drainage volume,postoperative deep vein thrombosis(DVT),postoperative hospital stay,postoperative activated partial thromboplastin time(APTT),prothrombin time(PT),thrombin time(TT),fibrinogen(FIB),platelet(PLT),red blood cell(RBC),hemoglobin(HB),hematocrit(HCT),the first day,the fourth day,the seventh day and the last tested after operation WBC,ESR and CRP were recorded.Results The postop-erative wounds of the patients healed well and there was no DVT.46 patients were followed up from 3 to 6 months.The intraop-erative blood loss was 400.0(300.0,500.0)ml and the postoperative drainage was 260.0(220.0,450.0)ml in the observation group,which were lower than the control group[600.0(400.0,1000.0)ml,395.0(300.0,450.0)ml],P<0.05.There was no significant difference between the two groups in operation time,postoperative hospital stay,postoperative APTT,PT,TT,FIB,PLT,RBC,HB,HCT,and postoperative WBC,ESR and CRP at different times(P>0.05).Conclusion Single dose intravenous infusion of TXA can reduce the blood loss of bi-segmental PLIF,and has no significant effect on WBC,ESR and CRP after op-eration.
6.Radiofrequency ablation on prosthetic valve for atrial tachycardia after transcatheter aortic valve replacement
Hong-Xiao LI ; Bi-Jun HUANG ; Lu-Xin WANG ; Xing-Xu WANG ; Yun-Kai WANG ; Xiao-Yan HE ; Jian-Qiang ZHANG
Chinese Journal of Interventional Cardiology 2024;32(4):232-235
Transcatheter aortic valve replacement(TAVR)has emerged as a promising therapeutic alternative for addressing aortic valve-related pathologies.However,the occurrence of rapid arrhythmias linked to TAVR procedures is progressively drawing scrutiny.Presently,pharmacologic interventions constitute the mainstay of managing atrial arrhythmias related to TAVR,while the potential of ablation as a viable treatment modality remains undefined.Notably,in cases where the arrhythmia's genesis is presumed to be intricately linked to the prosthetic valve,the practicality and safety of ablation procedures remain unverified.Our institution has successfully ventured into radiofrequency ablation for a distinctive patient presenting with this intricate condition,thereby tentatively affirming the efficacy and safety of catheter ablation administered on the surface of prosthetic valves.
7.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
8.Expression and activity analysis of Clostridium difficile toxin B type 2
Xing-Hao LIN ; Kai ZHANG ; Meng-Jie WANG ; Ming YANG ; Han-Yang GU ; Xiao-Lan XUE ; Yong-Neng LUO ; Da-Zhi JIN ; Hui HU
Chinese Journal of Zoonoses 2024;40(6):498-503
This study was aimed at creating an engineered strain of Bacillus subtilis for efficient expression of biologically active type 2 toxin B(TcdB2)derived from a highly virulent strain of Clostridium difficile.The TcdB2 gene was cloned from ST1/RT027 strain genome DNA,incorporated into the PHT01 vector,and then transformed into B.subtilis strain WB800N for prokaryotic expression.Cell toxicity assays revealed that the recombinant TcdB2 exhibited cytotoxic effects in various cells.The engineered B.subtilis strain effectively expressed biologically active TcdB2,thus providing a basis for further exploration of the pathogenic mechanisms of highly virulent strains of C.difficile and establishing a foundation for potential vaccine can-didate targets.
9.Cloning and expression of the K26 gene of Leishmania and evaluation of detection of specific antibodies against visceral leishmaniasis in China
Dan DING ; Ying WANG ; Chun-Hua GAO ; Xiao-Jin MO ; Feng SHI ; Jing ZHANG ; Xiao-Kai JIA ; Fu-Rong WEI
Chinese Journal of Zoonoses 2024;40(8):763-767
To clone and express the K26 gene of Leishmania isolated from three types of visceral leishmaniasis epidemic ar-eas in China and evaluate its effect on detecting specific antibodies against visceral leishmaniasis.The K26 fragments from Leishmania isolated KS-6,SC6 and JIASHI-1 was synthesized and cloned into pET32a vector.The recombinant plasmid pET32a-K26 was transformed into Escherichia coli BL21 strains and induced by isopropyl-β-D-thiogalactopyranoside(IPTG).The expressed recombinant protein was purified by the His-tagged affinity column(Ni-NTA).Serum samples of 110 visceral leishmaniasis patients were used for evaluating the sensitivity by ELISA.Serum samples from patients with malaria,schisto-somiasis japonica,cystechinococcosis,toxoplasmosis,paragon-imiasis,clonorchiosis and 40 healthy people were used for eval-uating the specificity.Detection results of ELISA were compared with that of rK39 strip of American InBios company.Comparation among three K26 antigens were given by x2 test.The sensitivity of the recombinant K26 protein of KS-6,SC6 and JIASHI-5 strains of Leishmania and rK39 strip test to detect the sera of patients with visceral leishmaniasis was 90.00%(99/110),92.73%(102/110),90.91%(100/110)and 93.64%(103/110),respectively.There was no cross reactivity with malaria(10),schistosomiasis japonica(10),cystechinococcosis(10),toxoplasmosis(5),paragonimiasis(5)and clonorchiosis(5),and 40 sera from healthy people were also negative.The specificity was 100.00%.There was no statistical difference in the sensitivity of the recombinant K26 protein of KS-6,SC6 and JIASHI-1 strains of Leishmania and rK39 strip test,x2 values are 0.97,0.07 and 0.57 respectively and the P values are 0.33,0.79 and 0.45,respectively.There was no statis-tical difference in the sensitivity of three K26 antigens(x2=0.53,P=0.97).Conclusion The recombinant K26 antigen has po-tential application value in the diagnosis of visceral leishmaniasis.
10.The Efficacy and Safety of Venetoclax Combined with Azacitidine in the Treatment of Adult Patients with Acute Myeloid Leukemia Who Are Unfit for Intensive Chemotherapy
Kai-Yue WANG ; Bing-Ru FAN ; Qian-Wen ZHANG ; Meng-Ru HAN ; Xiao-Yan GE
Journal of Experimental Hematology 2024;32(2):342-346
Objective:To observe the clinical efficacy and safety of venetoclax(VEN)combined with azacitidine(AZA)in the treatment of adult acute myeloid leukemia(AML)patients who are unfit for intensive chemotherapy.Methods:The clinical data of 21 adult patients with unfit AML who were treated with VEN combined with AZA in the Second Hospital of Shanxi Medical University from January 2021 to May 2022 were collected,and the efficacy and safety were analyzed retrospectively.Results:After one course of treatment with VEN and AZA,16 out of 21 unfit AML patients reached complete remission(CR)/CR with incomplete hematologic recovery(CRi),2 patients reached partial remission(PR),the overall response rate(ORR)was 85.7%.Among the 16 patients with CR/CRi,13 achieved minimal residual disease(MRD)negativity.Among the 11 patients with adverse prognosis,8 achieved CR/CRi.By the deadline of follow-up,the median overall suivival(OS)of the entire cohort was not reached,with 1-year OS rate of 61.7%.The main adverse events of VEN combined with AZA were myelosuppression,gastrointestinal reactions and infections.There were 13 cases of leukopenia,7 cases of neutropenia,7 cases of anemia,4 cases of thrombocytopenia,and these hematologic adverse events were all grade 3-4.There were 11 cases with gastrointestinal reactions and 7 cases with infections.The above adverse events were controllable and tolerable.No tumor lysis syndrome or infection related death occurred.Conclusion:VEN combined with AZA can quickly achieve deep remission in adult patients with unfit AML,and it shows a good safety profile.

Result Analysis
Print
Save
E-mail