1.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
2.Exercise-induced angiogenesis and lymphangiogenesis: A potential therapeutic tool to fight aging and disease.
Jizong JIANG ; Yongjun ZHENG ; Rui WANG ; Hao YANG ; Shihui ZANG ; Emeli CHATTERJEE ; Guoping LI ; Dragos CRETOIU ; Cuimei ZHAO ; Junjie XIAO
Chinese Medical Journal 2025;138(20):2552-2587
Aging is an inevitable, physiological process of the human body, leading to deterioration in bodily function and increased susceptibility to various diseases. Effective endogenous therapeutic strategies for anti-aging and related diseases remain limited. Exercise confers multifaceted benefits to physical health by augmenting osteogenic and myogenic processes, enhancing cardiovascular and nervous system function, and attenuating chronic inflammation. Angiogenesis and lymphangiogenesis play pivotal roles in anti-aging, tissue repair, and immune response modulation, underscoring their potential as therapeutic targets for age-related diseases. Modulating angiogenic and lymphangiogenic pathways may provide a promising strategy for mitigating vascular decline and immune system dysfunction associated with aging. Exercise-induced endogenous angiogenesis and lymphangiogenesis can exert beneficial effects on physiological function, thereby representing a potential therapeutic paradigm for combating age-related decline and diseases. This review offers a thorough summary of the present knowledge regarding angiogenesis and lymphangiogenesis induced by exercise, encompassing the underlying mechanisms and the effects in different organs. In addition, it explores the potential of physical activity as a non-pharmacological intervention for anti-aging strategies and disease management, offering novel insights into the intersection of physical activity, aging, and disease progression.
Humans
;
Lymphangiogenesis/physiology*
;
Aging/physiology*
;
Exercise/physiology*
;
Animals
;
Neovascularization, Physiologic/physiology*
;
Angiogenesis
3.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
4.Pharmacokinetics of 7 characteristic components from active fraction of Alpiniae Officinarum Rhizoma in rats with Helicobacter pylori gastritis based on HPLC-MS/MS.
Hao-Ran MA ; Jian-Ting ZHAN ; Xin LUO ; Wu-Yin-Xiao ZHENG ; Xiao-Chuan YE ; Dan LIU
China Journal of Chinese Materia Medica 2025;50(7):1949-1958
A high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS) method was established for simultaneous determination of seven characteristic components from the active fraction of Alpiniae Officinarum Rhizoma in rat plasma, including galangin, kaempferol, kaempferide, pinocembrin, 1,7-diphenyl-4-en-3-heptanone, 5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenyl-3-heptanone(DHPA), and 7-(4-hydroxy-3-methoxyphenyl)-1-phenyl-4-en-3-heptanone(DPHB). The new developed HPLC-MS/MS method was applied to study the pharmacokinetics of the 7 characteristic components in rats with Helicobacter pylori gastritis. A Waters Sunfire C_(18) column(2.1 mm×150 mm, 3.5 μm) was used. The acetonitrile-aqueous solution(containing 0.1% formic acid) was adopted as the mobile phase for gradient elution. Seven components and internal standard(chlorogenic acid) were separated within 12 min. Mass spectrometric detection was performed in multiple reaction monitoring(MRM) mode using electrospray ionization(ESI) source with fast switching between positive and negative ions. The method was verified by specificity, linearity, precision, accuracy, recovery, matrix effect, and stability and met the requirements of pharmacokinetic study on the 7 components in rat plasma. Pharmacokinetic results showed that the average peak time(T_(max)) of the 7 components was 0.31-2.19 h, their elimination half-life(t_(1/2)) was 5.26-16.65 h, and the average residence time(MRT) was 6.29-31.03 h after the oral administration of the active fraction of Alpiniae Officinarum Rhizoma to rats with H. pylori gastritis. The plasma exposure levels of galangin and DHPA were higher than those of the other components. The concentration-time curves of four detected flavonoids showed obvious double peaks. This study elucidated the pharmacokinetic characteristics of 7 characteristic components from the active fraction of Alpiniae Officinarum Rhizoma in rats with H. pylori gastritis, providing a scientific basis for the identification of the pharmacodynamic substances of Alpiniae Officinarum Rhizoma for treatment of H. pylori gastritis and the clinical application of Alpiniae Officinarum Rhizoma in the prevention and treatment of H. pylori gastritis.
Animals
;
Rats
;
Chromatography, High Pressure Liquid/methods*
;
Tandem Mass Spectrometry/methods*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Helicobacter pylori/drug effects*
;
Alpinia/chemistry*
;
Rats, Sprague-Dawley
;
Gastritis/metabolism*
;
Helicobacter Infections/metabolism*
;
Flavonoids/blood*
;
Rhizome/chemistry*
;
Liquid Chromatography-Mass Spectrometry
5.Application of motor behavior evaluation method of zebrafish model in traditional Chinese medicine research.
Xin LI ; Qin-Qin LIANG ; Bing-Yue ZHANG ; Zhong-Shang XIA ; Gang BAI ; Zheng-Cai DU ; Er-Wei HAO ; Jia-Gang DENG ; Xiao-Tao HOU
China Journal of Chinese Materia Medica 2025;50(10):2631-2639
The zebrafish model has attracted much attention due to its strong reproductive ability, short research cycle, and ease of maintenance. It has always been an important vertebrate model system, often used to carry out human disease research. Its motor behavior features have the advantages of being simpler, more intuitive, and quantifiable. In recent years, it has received widespread attention in the study of traditional Chinese medicine(TCM)for the treatment of sleep disorders, neurodegenerative diseases, fatigue, epilepsy, and other diseases. This paper reviews the characteristics of zebrafish motor behavior and its applications in the pharmacodynamic verification and mechanism research of TCM extracts, active ingredients, and TCM compounds, as well as in active ingredient screening and safety evaluation. The paper also analyzes its advantages and disadvantages, with the aim of improving the breadth and depth of zebrafish and its motor behavior applications in the field of TCM research.
Zebrafish/physiology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
;
Disease Models, Animal
;
Drug Evaluation, Preclinical/methods*
;
Animals
;
Sleep Wake Disorders/physiopathology*
;
Epilepsy/physiopathology*
;
Neurodegenerative Diseases/physiopathology*
;
Fatigue/physiopathology*
;
Behavior, Animal/physiology*
;
Motor Activity/physiology*
6.Comparison on chemical components of Angelicae Sinensis Radix before and after wine processing by HS-GC-IMS, HS-SPME-GC-MS, and UPLC-Q-Orbitrap-MS combined with chemometrics.
Xue-Hao SUN ; Jia-Xuan CHEN ; Jia-Xin YIN ; Xiao HAN ; Zhi-Ying DOU ; Zheng LI ; Li-Ping KANG ; He-Shui YU
China Journal of Chinese Materia Medica 2025;50(14):3909-3917
The study investigated the intrinsic changes in material basis of Angelicae Sinensis Radix during wine processing by headspace-gas chromatography-ion mobility spectrometry(HS-GC-IMS), headspace-solid phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS), and ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry(UPLC-Q-Orbitrap-MS) combined with chemometrics. HS-GC-IMS fingerprints of Angelicae Sinensis Radix before and after wine processing were established to analyze the variation trends of volatile components and characterize volatile small-molecule substances before and after processing. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed for differentiation and difference analysis. A total of 89 volatile components in Angelicae Sinensis Radix were identified by HS-GC-IMS, including 14 unsaturated hydrocarbons, 16 aldehydes, 13 ketones, 9 alcohols, 16 esters, 6 organic acids, and 15 other compounds. HS-SPME-GC-MS detected 118 volatile components, comprising 42 unsaturated hydrocarbons, 11 aromatic compounds, 30 alcohols, 8 alkanes, 6 organic acids, 4 ketones, 7 aldehydes, 5 esters, and 5 other volatile compounds. UPLC-Q-Orbitrap-MS identified 76 non-volatile compounds. PCA revealed distinct clusters of raw and wine-processed Angelicae Sinensis Radix samples across the three detection methods. Both PCA and OPLS-DA effectively discriminated between the two groups, and 145 compounds(VIP>1) were identified as critical markers for evaluating processing quality, including 4-methyl-3-penten-2-one, ethyl 2-methylpentanoate, and 2,4-dimethyl-1,3-dioxolane detected by HS-GC-IMS, angelic acid, β-pinene, and germacrene B detected by HS-SPME-GC-MS, and L-tryptophan, licoricone, and angenomalin detected by UPLC-Q-Orbitrap-MS. In conclusion, the integration of the three detection methods with chemometrics elucidates the differences in the chemical material basis between raw and wine-processed Angelicae Sinensis Radix, providing a scientific foundation for understanding the processing mechanisms and clinical applications of wine-processed Angelicae Sinensis Radix.
Wine/analysis*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Angelica sinensis/chemistry*
;
Solid Phase Microextraction/methods*
;
Drugs, Chinese Herbal/isolation & purification*
;
Chemometrics
;
Volatile Organic Compounds/chemistry*
;
Principal Component Analysis
;
Ion Mobility Spectrometry/methods*
7.Study on protective effect of arbutin in yam on acute lung injury and its metabolic regulation mechanism.
Kai-Li YE ; Meng-Nan ZENG ; Feng-Xiao HAO ; Peng-Li GUO ; Yu-Han ZHANG ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(15):4100-4109
This study investigated the protective effect of arbutin(Arb) in yam on lipopolysaccharide(LPS)-induced acute lung injury(ALI) in a mouse model and revealed its possible mechanism of action by metabolomics technology, providing a theoretical basis for clinical treatment of ALI. SPF BALB/c mice were randomly divided into normal control group, model group, resveratrol(Rv)-positive control group, Arb low-dose(15 mg·kg~(-1)) group, and Arb high-dose(30 mg·kg~(-1)) group. The LPS-induced ALI model was established in all groups except the normal control group. Hematoxylin-eosin(HE) staining, TUNEL staining, and WBP whole-body non-invasive pulmonary function testing were used to evaluate the degree of lung tissue damage and lung function changes. Enzyme-linked immunosorbent assay(ELISA) was used to detect the level of inflammatory factors in lung tissue. Flow cytometry was used to analyze the M1/M2 polarization status of macrophages in lung tissue. Western blot was used to detect the expression levels of the TLR4 signaling pathway and related apoptotic proteins. Liquid chromatograph-mass spectrometer(LC-MS) metabolomics was used to analyze the changes in serum metabolic profile after Arb intervention. The results showed that Arb pretreatment significantly alleviated LPS-induced lung tissue injury, improved lung function, reduced the levels of pro-inflammatory factors(IL-6, TNF-α, IL-18, and IL-1β), and regulated the polarization status of M1/M2 macrophages. In addition, Arb inhibited the activation of the TLR4 signaling pathway, reduced the expression of pro-apoptotic proteins such as Bax, caspase-3, and caspase-9, up-regulated the level of Bcl-2 protein, and inhibited apoptosis of lung cells. Metabolomic analysis showed that Arb significantly improved LPS-induced metabolic abnormalities, mainly involving key pathways such as galactose metabolism, phenylalanine metabolism, and lipid metabolism. In summary, Arb can significantly reduce LPS-induced ALI by regulating the release of inflammatory factors, inhibiting the activation of the TLR4 signaling pathway, improving metabolic disorders, and regulating macrophage polarization, indicating that Arb has potential clinical application value.
Animals
;
Acute Lung Injury/chemically induced*
;
Mice
;
Mice, Inbred BALB C
;
Arbutin/administration & dosage*
;
Male
;
Toll-Like Receptor 4/immunology*
;
Apoptosis/drug effects*
;
Lung/metabolism*
;
Signal Transduction/drug effects*
;
Protective Agents/administration & dosage*
;
Humans
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
8.Domestication progress of endangered Chinese medicinal material Fritillariae Cirrhosae Bulbus.
Ting XIAO ; Ming-Hao YANG ; Qiu-Ling WANG ; Qiang LYU ; Yu-Qing ZHENG ; Lian-Cheng XU ; Ma YU ; Jian-He WEI
China Journal of Chinese Materia Medica 2025;50(16):4483-4489
Fritillariae Cirrhosae Bulbus is the dried bulb of perennial herbaceous plants in the Fritillaria genus(Liliaceae family) and is a representative traditional Chinese medicinal material with distinctive regional characteristics. Clinically, it is widely used in the treatment of dry cough, bronchial asthma, and other respiratory diseases, possessing significant medicinal and economic value and being highly esteemed in TCM. Currently, Fritillariae Cirrhosae Bulbus primarily relies on wild harvesting. However, due to excessive collection, its wild resources have drastically declined, and all source species have been classified as category Ⅱ in the List of National Key Protected Wild Plants, exacerbating the supply-demand imbalance in the market. To mitigate this issue, large-scale cultivation through the domestication of wild Fritillariae Cirrhosae Bulbus has become an inevitable trend. However, its strict environmental requirements, low propagation efficiency, high seedling mortality, and immature cultivation techniques have severely hindered industrialization. This study investigates the domestication process of Fritillariae Cirrhosae Bulbus, focusing on seed propagation, seedling cultivation, and medicinal material production. It also reviews the species and distribution of wild resources, their endangered status, market supply-demand dynamics, and the historical and current development of domestication. The findings indicate that enhancing propagation efficiency, optimizing cultivation models, and distinguishing between seed propagation and medicinal material production are key measures to accelerate the industrialization of domesticated Fritillariae Cirrhosae Bulbus. This research aims to promote the industrialization of Fritillariae Cirrhosae Bulbus domestication and provide a reference model for the conservation and sustainable utilization of rare and endangered medicinal plant resources.
Fritillaria/chemistry*
;
Endangered Species
;
Plants, Medicinal/growth & development*
;
Drugs, Chinese Herbal/economics*
;
China
9.Prognostic value of quantitative flow ratio measured immediately after percutaneous coronary intervention for chronic total occlusion.
Zheng QIAO ; Zhang-Yu LIN ; Qian-Qian LIU ; Rui ZHANG ; Chang-Dong GUAN ; Sheng YUAN ; Tong-Qiang ZOU ; Xiao-Hui BIAN ; Li-Hua XIE ; Cheng-Gang ZHU ; Hao-Yu WANG ; Guo-Feng GAO ; Ke-Fei DOU
Journal of Geriatric Cardiology 2025;22(4):433-442
BACKGROUND:
The clinical impact of post-percutaneous coronary intervention (PCI) quantitative flow ratio (QFR) in patients treated with PCI for chronic total occlusion (CTO) was still undetermined.
METHODS:
All CTO vessels treated with successful anatomical PCI in patients from PANDA III trial were retrospectively measured for post-PCI QFR. The primary outcome was 2-year vessel-oriented composite endpoints (VOCEs, composite of target vessel-related cardiac death, target vessel-related myocardial infarction, and ischemia-driven target vessel revascularization). Receiver operator characteristic curve analysis was conducted to identify optimal cutoff value of post-PCI QFR for predicting the 2-year VOCEs, and all vessels were stratified by this optimal cutoff value. Cox proportional hazards models were employed to calculate the hazard ratio (HR) with 95% CI.
RESULTS:
Among 428 CTO vessels treated with PCI, 353 vessels (82.5%) were analyzable for post-PCI QFR. 31 VOCEs (8.7%) occurred at 2 years. Mean value of post-PCI QFR was 0.92 ± 0.13. Receiver operator characteristic curve analysis shown the optimal cutoff value of post-PCI QFR for predicting 2-year VOCEs was 0.91. The incidence of 2-year VOCEs in the vessel with post-PCI QFR < 0.91 (n = 91) was significantly higher compared with the vessels with post-PCI QFR ≥ 0.91 (n = 262) (22.0% vs. 4.2%, HR = 4.98, 95% CI: 2.32-10.70).
CONCLUSIONS
Higher post-PCI QFR values were associated with improved prognosis in the PCI practice for coronary CTO. Achieving functionally optimal PCI results (post-PCI QFR value ≥ 0.91) tends to get better prognosis for patients with CTO lesions.
10.Augmentation of PRDX1-DOK3 interaction alleviates rheumatoid arthritis progression by suppressing plasma cell differentiation.
Wenzhen DANG ; Xiaomin WANG ; Huaying LI ; Yixuan XU ; Xinyu LI ; Siqi HUANG ; Hongru TAO ; Xiao LI ; Yulin YANG ; Lijiang XUAN ; Weilie XIAO ; Dean GUO ; Hao ZHANG ; Qiong WU ; Jie ZHENG ; Xiaoyan SHEN ; Kaixian CHEN ; Heng XU ; Yuanyuan ZHANG ; Cheng LUO
Acta Pharmaceutica Sinica B 2025;15(8):3997-4013
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent inflammation and joint damage, accompanied by the accumulation of plasma cells, which contributes to its pathogenesis. Understanding the genetic alterations occurring during plasma cell differentiation in RA can deepen our comprehension of its pathogenesis and guide the development of targeted therapeutic interventions. Here, our study elucidates the intricate molecular mechanisms underlying plasma cell differentiation by demonstrating that PRDX1 interacts with DOK3 and modulates its degradation by the autophagy-lysosome pathway. This interaction results in the inhibition of plasma cell differentiation, thereby alleviating the progression of collagen-induced arthritis. Additionally, our investigation identifies Salvianolic acid B (SAB) as a potent small molecular glue-like compound that enhances the interaction between PRDX1 and DOK3, consequently impeding the progression of collagen-induced arthritis by inhibiting plasma cell differentiation. Collectively, these findings underscore the therapeutic potential of developing chemical stabilizers for the PRDX1-DOK3 complex in suppressing plasma cell differentiation for RA treatment and establish a theoretical basis for targeting PRDX1-protein interactions as specific therapeutic targets in various diseases.

Result Analysis
Print
Save
E-mail