3.Role of SPINK in Dermatologic Diseases and Potential Therapeutic Targets
Yong-Hang XIA ; Hao DENG ; Li-Ling HU ; Wei LIU ; Xiao TAN
Progress in Biochemistry and Biophysics 2025;52(2):417-424
Serine protease inhibitor Kazal-type (SPINK) is a skin keratinizing protease inhibitor, which was initially found in animal serum and is widely present in plants, animals, bacteria, and viruses, and they act as key regulators of skin keratinizing proteases and are involved in the regulation of keratinocyte proliferation and inflammation, primarily through the inhibition of deregulated tissue kinin-releasing enzymes (KLKs) in skin response. This process plays a crucial role in alleviating various skin problems caused by hyperkeratinization and inflammation, and can greatly improve the overall condition of the skin. Specifically, the different members of the SPINK family, such as SPINK5, SPINK6, SPINK7, and SPINK9, each have unique biological functions and mechanisms of action. The existence of these members demonstrates the diversity and complexity of skin health and disease. First, SPINK5 mutations are closely associated with the development of various skin diseases, such as Netherton’s syndrome and atopic dermatitis, and SPINK5 is able to inhibit the activation of the STAT3 signaling pathway, thereby effectively preventing the metastasis of melanoma cells, which is important in preventing the invasion and migration of malignant tumors. Secondly, SPINK6 is mainly distributed in the epidermis and contains lysine and glutamate residues, which can act as a substrate for epidermal transglutaminase to maintain the normal structure and function of the skin. In addition, SPINK6 can activate the intracellular ERK1/2 and AKT signaling pathways through the activation of epidermal growth factor receptor and protease receptor-2 (EphA2), which can promote the migration of melanoma cells, and SPINK6 further deepens its role in stimulating the migration of malignant tumor cells by inhibiting the activation of STAT3 signaling pathway. This process further deepens its potential impact in stimulating tumor invasive migration. Furthermore, SPINK7 plays a role in the pathology of some inflammatory skin diseases, and is likely to be an important factor contributing to the exacerbation of skin diseases by promoting aberrant proliferation of keratinocytes and local inflammatory responses. Finally, SPINK9 can induce cell migration and promote skin wound healing by activating purinergic receptor 2 (P2R) to induce phosphorylation of epidermal growth factor and further activating the downstream ERK1/2 signaling pathway. In addition, SPINK9 also plays an antimicrobial role, preventing the interference of some pathogenic microorganisms. Taken as a whole, some members of the SPINK family may be potential targets for the treatment of dermatological disorders by regulating multiple biological processes such as keratinization metabolism and immuno-inflammatory processes in the skin. The development of drugs such as small molecule inhibitors and monoclonal antibodies has great potential for the treatment of dermatologic diseases, and future research on SPINK will help to gain a deeper understanding of the physiopathologic processes of the skin. Through its functions and regulatory mechanisms, the formation and maintenance of the skin barrier and the occurrence and development of inflammatory responses can be better understood, which will provide novel ideas and methods for the prevention and treatment of skin diseases.
8.Medication rules of Astragali Radix in ancient Chinese medical books based on "disease-medicine-dose" pattern.
Jia-Lei CAO ; Lü-Yuan LIANG ; Yi-Hang LIU ; Zi-Ming XU ; Xuan WANG ; Wen-Xi WEI ; He-Jia WAN ; Xing-Hang LYU ; Wei-Xiao LI ; Yu-Xin ZHANG ; Bing-Qi WEI ; Xian-Qing REN
China Journal of Chinese Materia Medica 2025;50(3):798-811
This study employed the "disease-medicine-dose" pattern to mine the medication rules of traditional Chinese medicine(TCM) prescriptions containing Astragali Radix in ancient Chinese medical books, aiming to provide a scientific basis for the clinical application of Astragali Radix and the development of new medicines. The TCM prescriptions containing Astragali Radix were retrieved from databases such as Chinese Medical Dictionary and imported into Excel 2020 to construct the prescription library. Statical analysis were performed for the prescriptions regarding the indications, syndromes, medicine use frequency, herb effects, nature and taste, meridian tropism, dosage forms, and dose. SPSS statistics 26.0 and IBM SPSS Modeler 18.0 were used for association rules analysis and cluster analysis. A total of 2 297 prescriptions containing Astragali Radix were collected, involving 233 indications, among which sore and ulcer, consumptive disease, sweating disorder, and apoplexy had high frequency(>25), and their syndromes were mainly Qi and blood deficiency, Qi and blood deficiency, Yin and Yang deficiency, and Qi deficiency and collateral obstruction, respectively. In the prescriptions, 98 medicines were used with the frequency >25 and they mainly included Qi-tonifying medicines and blood-tonifying medicines. Glycyrrhizae Radix et Rhizoma, Angelicae Sinensis Radix, Ginseng Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, and Citri Reticulatae Pericarpium were frequently used. The medicines with high frequency mainly have warm or cold nature, and sweet, pungent, or bitter taste, with tropism to spleen, lung, heart, liver, and kidney meridians. In the treatment of sore and ulcer, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to promote granulation and heal up sores. In the treatment of consumptive disease, Astragali Radix was mainly used with the dose of 37.30 g and combined with Ginseng Radix et Rhizoma to tonify deficiency and replenish Qi. In the treatment of sweating disorder, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to consolidate exterior and stop sweating. In the treatment of apoplexy, Astragali Radix was mainly used with the dose of 7.46 g and combined with Glycyrrhizae Radix et Rhizoma to dispell wind and stop convulsions. Astragali Radix can be used in the treatment of multiple system diseases, with the effects of tonifying Qi and ascending Yang, consolidating exterior and stopping sweating, and expressing toxin and promoting granulation. According to the manifestations of different diseases, when combined with other medicines, Astragali Radix was endowed with the effects of promoting granulation and healing up sores, tonifying deficiency and Qi, consolidating exterior and stopping sweating, and dispelling wind and replenishing Qi. The findings provide a theoretical reference and a scientific basis for the clinical application of Astragali Radix and the development of new medicines.
Drugs, Chinese Herbal/history*
;
Humans
;
Medicine, Chinese Traditional/history*
;
History, Ancient
;
Astragalus Plant/chemistry*
;
China
;
Astragalus propinquus
9.Mineralogical studies on iron-containing mineral medicines, Haematitum and Limonitum.
Min LU ; Xiao-Fei WANG ; Cheng-Cheng WANG ; Jing-Xu CHEN ; Hang-Jie ZHU ; Juan LI ; Yan CAO
China Journal of Chinese Materia Medica 2025;50(5):1179-1186
Haematitum and Limonitum are two iron-containing mineral medicines included in the 2020 edition of the Chinese Pharmacopoeia. They have similar main components and major differences in their property, flavor, channel tropism, and clinical uses. In this study, we investigated the surface properties, mineral composition, mineral dissociation, elemental composition, and iron state of Haematitum and Limonitum to explore their mineralogical differences. Scanning electron microscopy(SEM), specific surface and porosity analyzer, X-ray diffractometer(XRD), X-ray photoelectron spectrometer(XPS), and advanced mineral identification and characterization system(AMICS) were used to analyze the mineralogy of Haematitum and Limonitum. The results showed that Haematitum had an angular surface with granular attachments and a specific surface area of 17.04 m~2·g~(-1). In comparison, Limonitum had a smooth and flat surface with a bundled acicular crystal structure and a specific surface area of 46.29 m~2·g~(-1). Haematitum consists of 31 detectable minerals containing 18 elements, with the major element, iron(44.5% Fe~(2+) and 55.5% Fe~(3+)) distributed in 17 minerals, including hematite, iron oxide, knebelite, siderite, and magnesioferrite. Limonitum consists of 32 detectable minerals containing 17 elements, with the major element, iron(14.5% Fe~(2+) and 85.5% Fe~(3+)) distributed in 19 minerals, including limonite, iron oxide, chlorite, and knebelite. In summary, the elemental composition of Haematitum and Limonitum does not differ greatly, but there are large differences in the mineral composition and iron state. The large specific surface area and strong adsorption capacity of Limonitum may be one of the mechanisms of its anti-diarrheal action. The Fe_2O_3 and illite contained in Haematitum and Limonitum may be the key substances for their hemostasis effects. The mineralogical differences are expected to provide a reference for explaining the scientific connotation of mineral medicine and laying a material foundation for studying its mechanism of action.
Iron/analysis*
;
Minerals/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
X-Ray Diffraction
;
Microscopy, Electron, Scanning
;
Photoelectron Spectroscopy
10.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*

Result Analysis
Print
Save
E-mail