1.Applications of Vaterite in Drug Loading and Controlled Release
Xiao-Hui SONG ; Ming-Yu PAN ; Jian-Feng XU ; Zheng-Yu HUANG ; Qing PAN ; Qing-Ning LI
Progress in Biochemistry and Biophysics 2025;52(1):162-181
Currently, the drug delivery system (DDS) based on nanomaterials has become a hot interdisciplinary research topic. One of the core issues is drug loading and controlled release, in which the key lever is carriers. Vaterite, as an inorganic porous nano-material, is one metastable structure of calcium carbonate, full of micro or nano porous. Recently, vaterite has attracted more and more attention, due to its significant advantages, such as rich resources, easy preparations, low cost, simple loading procedures, good biocompatibility and many other good points. Vaterite, gained from suitable preparation strategies, can not only possess the good drug carrying performance, like high loading capacity and stable loading efficiency, but also improve the drug release ability, showing the better drug delivery effects, such as targeting release, pH sensitive release, photothermal controlled release, magnetic assistant release, optothermal controlled release. At the same time, the vaterite carriers, with good safety itself, can protect proteins, enzymes, or other drugs from degradation or inactivation, help imaging or visualization with loading fluorescent drugs in vitro and in vivo, and play synergistic effects with other therapy approaches, like photodynamic therapy, sonodynamic therapy, and thermochemotherapy. Latterly, some renewed reports in drug loading and controlled release have led to their widespread applications in diverse fields, from cell level to clinical studies. This review introduces the basic characteristics of vaterite and briefly summarizes its research history, followed by synthesis strategies. We subsequently highlight recent developments in drug loading and controlled release, with an emphasis on the advantages, quantity capacity, and comparations. Furthermore, new opportunities for using vaterite in cell level and animal level are detailed. Finally, the possible problems and development trends are discussed.
2.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
3.Hepatocyte Nuclear Factor 4α Transcriptionally Activates TM4SF5 Through The DR1 Motif
Yi-Ming GUO ; Xiao-Fei ZHANG ; Han FENG ; Li ZHENG
Progress in Biochemistry and Biophysics 2025;52(5):1241-1251
ObjectiveHepatocyte nuclear factor 4-alpha (HNF4A) is a critical transcription factor in the liver and pancreas. Dysfunctions of HNF4A lead to maturity onset diabetes of the young 1 (MODY1). Notably, MODY1 patients with HNF4A pathogenic mutations exhibit decreased responses to arginine and reduced plasma triglyceride levels, but the mechanisms remain unclear. This study aims to investigate the potential target genes transcriptionally regulated by HNF4A and explore its role in these metabolic pathways. MethodsA stable 293T cell line expressing the HNF1A reporter was overexpressed with HNF4A. RNA sequencing (RNA-seq) was performed to analyze transcriptional differences. Transcription factor binding site prediction was then conducted to identify HNF4A binding motifs in the promoter regions of relevant target genes. ResultsRNA-seq results revealed a significant upregulation of transmembrane 4 L six family member 5 (TM4SF5) mRNA in HNF4A-overexpressing cells. Transcription factor binding predictions suggested the presence of five potential HNF4A binding motifs in the TM4SF5 promoter. Finally, we confirmed that the DR1 site in the -57 to -48 region of the TM4SF5 promoter is the key binding motif for HNF4A. ConclusionThis study identified TM4SF5 as a target gene of HNF4A and determined the key binding motif involved in its regulation. Given the role of TM4SF5 as an arginine sensor in mTOR signaling activation and triglyceride secretion, which closely aligns with phenotypes observed in MODY1 patients, our findings provide novel insights into the possible mechanisms by which HNF4A regulates triglyceride secretion in the liver and arginine-stimulated insulin secretion in the pancreas.
4.Clinical trial of Morinda officinalis oligosaccharides in the continuation treatment of adults with mild and moderate depression
Shu-Zhe ZHOU ; Zu-Cheng HAN ; Xiu-Zhen WANG ; Yan-Qing CHEN ; Ya-Ling HU ; Xue-Qin YU ; Bin-Hong WANG ; Guo-Zhen FAN ; Hong SANG ; Ying HAI ; Zhi-Jie JIA ; Zhan-Min WANG ; Yan WEI ; Jian-Guo ZHU ; Xue-Qin SONG ; Zhi-Dong LIU ; Li KUANG ; Hong-Ming WANG ; Feng TIAN ; Yu-Xin LI ; Ling ZHANG ; Hai LIN ; Bin WU ; Chao-Ying WANG ; Chang LIU ; Jia-Fan SUN ; Shao-Xiao YAN ; Jun LIU ; Shou-Fu XIE ; Mao-Sheng FANG ; Wei-Feng MI ; Hong-Yan ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(6):815-819
Objective To observe the efficacy and safety of Morinda officinalis oligosaccharides in the continuation treatment of mild and moderate depression.Methods An open,single-arm,multi-center design was adopted in our study.Adult patients with mild and moderate depression who had received acute treatment of Morinda officinalis oligosaccharides were enrolled and continue to receive Morinda officinalis oligosaccharides capsules for 24 weeks,the dose remained unchanged during continuation treatment.The remission rate,recurrence rate,recurrence time,and the change from baseline to endpoint of Hamilton Depression Scale(HAMD),Hamilton Anxiety Scale(HAMA),Clinical Global Impression-Severity(CGI-S)and Arizona Sexual Experience Scale(ASEX)were evaluated.The incidence of treatment-related adverse events was reported.Results The scores of HAMD-17 at baseline and after treatment were 6.60±1.87 and 5.85±4.18,scores of HAMA were 6.36±3.02 and 4.93±3.09,scores of CGI-S were 1.49±0.56 and 1.29±0.81,scores of ASEX were 15.92±4.72 and 15.57±5.26,with significant difference(P<0.05).After continuation treatment,the remission rate was 54.59%(202 cases/370 cases),and the recurrence rate was 6.49%(24 cases/370 cases),the recurrence time was(64.67±42.47)days.The incidence of treatment-related adverse events was 15.35%(64 cases/417 cases).Conclusion Morinda officinalis oligosaccharides capsules can be effectively used for the continuation treatment of mild and moderate depression,and are well tolerated and safe.
5.Effects of liver-specific knockout of AMPKα on glycometabolism genes in mice
Hui-Ming ZHANG ; Qian GAO ; Yan-Bo HU ; Xiao-Ru ZHANG ; Zhong-Yue ZHANG ; Yan YANG ; Feng GAO ; Min-Jie WANG
The Chinese Journal of Clinical Pharmacology 2024;40(8):1184-1188
Objective To investigate the effects of liver-specific knockout of adenosine 5'-monophosphate-activated protein kinase α(AMPKα)on pancreatic function and glucose metabolism-related genes in mice.Methods AMPKα1/α2flox/flox mice were divided into blank group(common feed)and model group(60%high fat choline deficiency feet)with eight mice in each group,and another 8 AMPKα1/α2flox/flox/Alb-Cre+mice were divided into the knockout group(60%high fat choline deficiency feet).The kit detected the levels of blood lipids and liver function indexes.The differential genes in the mouse pancreas were detected by transcriptome sequencing.The expression of differential genes in mice was detected by real-time fluorescence quantitative polymerase chain reaction and Western blotting.Results The levels of triglyceride in the blank group,model group and knockout group were(0.94±0.11),(0.71±0.14)and(1.05±0.17)mmol·L-1;the levels of triglyceride and high-density lipoprotein were(1.62±0.07),(0.44±0.08)and(0.90±0.06)mmol·L-1;the levels of glutamic oxaloacetic transaminase were(7.02±5.87),(15.60±3.15)and(22.70±2.14)U·L-1;the levels of glutamic pyruvic transaminase were(14.56±11.55),(48.64±15.84)and(75.40±11.96)U·L-1;the expression levels of phosphoenolpyruvate carboxykinase 1(PCK1)mRNA were 1.00±0,1.37±0.25 and 0.31±0.18;the relative expression levels of PCK1 protein were 0.77±0.27,1.23±0.43 and 0.51±0.40,respectively.Significant differences existed in the above indexes between the knockout group and the model group(all P<0.05).Conclusion PCK1 gene may be an essential gene mediating the effect of liver AMPKα on islet function.
6.Mechanism and Current Situation of Decorporation Agents for Radionuclide Contamination in vivo
Bing-Yan KOU ; Yu-Feng GUO ; Xu-Hong DANG ; Xiao-Ming LIU
Progress in Biochemistry and Biophysics 2024;51(11):2960-2970
Radioactive contamination can occur during nuclear accidents, loss of radioactive sources and the use of radiation for photography, disinfection and detection. When the human body is accidentally contaminated by radionuclides, radionuclides can cause harm to the human body through inhalation, ingestion, direct transdermal absorption and contaminated wounds into body tissues and organs. In the treatment of radionuclide contamination in vivo, the main way is decorporation therapy, which mainly uses specific decorporation agents to selectively bind radionuclides to form stable non-toxic complexes, thereby preventing their deposition in the body, accelerating excretion, and reducing the total accumulation of radionuclides in human tissues. At present, internal radionuclide decorporation agents promote the release of radionuclides from the body mainly by stopping the entry of radionuclides into the body, ion exchange, chelation, and binding of exportants to carriers. But recent studies have found that lysosomal exocytosis, the natural clearing function of activated cells, also has a significant exportation effect. In this paper, we first introduced and analyzed the mechanism and research status of radionuclide decorporation agents that have been used in clinical practice, such as the blocking effect of potassium iodide, the ion exchange effect of Prussian blue, the chelation effect of DTPA, and the urine alkalinization effect of sodium bicarbonate. The second part introduces the mechanism and research status of promising radionuclide decorporation agents. Among them, 3,4,3-LI (1,2-HOPO) and 5-LIO (Me-3,2-HOPO) are the most promising ones and have been approved for phase I clinical trials. Others such as catecholamines, polyethyleneimine and fullerenes are also being studied with great potential. Polyethyleneimine, as a biological macromolecular chelator, has more chelating sites and stronger targeting effects than small molecule chelators, and has achieved a real breakthrough in decorporation. Fullerenes are known as “free radical sponges” with good free radical scavenging ability and antioxidant properties. In recent years, biomaterials have been widely used in the field of radionuclide decorporation, which has greatly improved the decorporation efficiency. Chitosan and pectin have shown great advantages in promoting radionuclide decorporation, chitosan can adsorb metal ions through electrostatic interaction and chelation, and can also react with free radicals to remove free radicals generated after radionuclides enter the body. Pectin can promote uranium efflux, but the exact mechanism remains unclear. Liposomes and nanomaterials as carriers enhance the intracellular drug delivery, prolong the retention time of drugs in the body, reduce adverse reactions, and make the traditional efflux enhancers glow with new vitality and have good development prospects. The last part summarizes and looks forward to the future research direction of radionuclide decorporation agents. At present, the research on decorporation agents at home and abroad is mostly stuck in the stage of drug development and drug synthesis, and few have actually entered the clinical trial stage. Therefore, the optimization of existing decorporation agents and the development of new ligands are critical. The targeting, biological safety, oral availability, and treatment needs of large-scale contamination scenarios are still the focus of attention. In addition, from the point of view of the mechanism itself, it is a new idea to promote the emission of radionuclides by activating potential channels, which can be continuously explored.
7.Effects of template and pore-forming agent method on the structure and drug delivery of porous maltodextrin
Zhe LI ; Xiao-sui LUO ; Wei-feng ZHU ; Qiong LI ; Yong-mei GUAN ; Zheng-ji JIN ; Li-hua CHEN ; Liang-shan MING
Acta Pharmaceutica Sinica 2024;59(8):2381-2395
This study using maltodextrin as raw material, 1%-5% polyvinylpyrrolidone K30 as template agent, 1%-5% ammonium bicarbonate as pore-forming agent, curcumin and ibuprofen as model drugs. Porous maltodextrin was prepared by template and pore-forming agent methods, respectively. The structure and drug delivery behavior of porous maltodextrin prepared by different technologies were comprehensively characterized. The results showed that the porous maltodextrin prepared by pore-forming agent method had larger specific surface area (6.449 4 m2·g-1) and pore size (32.804 2 nm), which was significantly better than that by template agent method (3.670 2 m2·g-1, 15.278 5 nm). The adsorption kinetics between porous maltodextrin prepared by pore-forming agent method and curcumin were suitable for quasi-first order adsorption kinetic model, and that between porous maltodextrin and ibuprofen were suitable for quasi-second order adsorption kinetic model. While the adsorption kinetics between porous maltodextrin prepared by template agent method and two model drugs were both suitable for the quasi-first order adsorption kinetic model. In addition, the dissolution behavior analysis showed that the porous maltodextrin prepared by the two technologies can significantly improve the dissolution behavior of insoluble drugs, and the drug release was both carried out by diffusion mechanism, which suitable for the Peppas kinetic release model, but the porous maltodextrin prepared by template agent method had a faster release rate. The change of nozzle diameter had no significant effect on the adsorption process and drug release behavior of porous maltodextrin. In conclusion, the porous maltodextrins prepared by two different technologies were both beneficial to the delivery of insoluble drugs, and the template agent method was the best for delivery of insoluble drugs. This study can provide theoretical basis for the preparation of porous particles, promote the application of porous particles in insoluble drugs, and improve the bioavailability of insoluble drugs.
8.Exploring the risk "time interval window" of sequential medication of Reduning injection and penicillin G injection based on the correlation between biochemical indexes and metabolomics characteristics
Ming-liang ZHANG ; Yu-long CHEN ; Xiao-yan WANG ; Xiao-fei CHEN ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Wei-xia LI ; Jin-fa TANG
Acta Pharmaceutica Sinica 2024;59(7):2098-2107
Exploring the risk "time interval window" of sequential medication of Reduning injection (RDN) and penicillin G injection (PG) by detecting the correlation between serum biochemical indexes and plasma metabonomic characteristics, in order to reduce the risk of adverse reactions caused by the combination of RDN and PG. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). The changes of biochemical indexes in serum of rats were detected by enzyme-linked immunosorbent assay. It was determined that RDN combined with PG could cause pseudo-allergic reactions (PARs) activated by complement pathway. Further investigation was carried out at different time intervals (1.5, 2, 3.5, 4, 6, and 8 h PG+RDN). It was found that sequential administration within 3.5 h could cause significant PARs. However, PARs were significantly reduced after administration interval of more than 4 h. LC-MS was used for plasma metabolomics analysis, and the levels of serum biochemical indicators and plasma metabolic profile characteristics were compared in parallel. 22 differential metabolites showed similar or opposite trends to biochemical indicators before and after 3.5 h. And enriched to 10 PARs-related pathways such as arachidonic acid metabolism, steroid hormone biosynthesis, linoleic acid metabolism, glycerophospholipid metabolism, and tryptophan metabolism. In conclusion, there is a risk "time interval window" phenomenon in the adverse drug reactions caused by the sequential use of RDN and PG, and the interval medication after the "time interval window" can significantly reduce the risk of adverse reactions.
9.Synthesis and anti-tumor activity of pyrazole pyrimidine PI3Kγ /δ inhibitors
Mao-qing DENG ; Feng-ming ZOU ; Zi-ping QI ; Chun WANG ; Kai-li LONG ; Qing-wang LIU ; Ao-li WANG ; Jing LIU ; Xiao-fei LIANG
Acta Pharmaceutica Sinica 2024;59(7):2041-2052
PI3K
10.Identification, expression and protein interaction analysis of Aux/IAA and ARF gene family in Senna tora L.
Zhao FENG ; Shi-peng LIU ; Rui-hua LÜ ; Rui-hua LÜ ; Xiao-chen HU ; Ming-ying ZHANG ; Ren-jun MAO ; Gang ZHANG
Acta Pharmaceutica Sinica 2024;59(3):751-763
The early response of plant auxin gene family

Result Analysis
Print
Save
E-mail