1.Xiaoyaosan Regulates HPT Axis in Rat Model with Syndrome of Liver Depression and Spleen Deficiency via CGA/GPX2/TSHβ Pathway for Thyroid Hormone Synthesis
Fang WANG ; Ruxin YUAN ; Lingjin FAN ; Zongli CHEN ; Huaye XIAO ; Liqiang YANG ; Xiaohong LI ; Chuncheng ZHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):1-10
ObjectiveTo explore the mechanism by which Xiaoyaosan regulates HPT axis dysfunction in the rat model with the syndrome of liver depression and spleen deficiency by observing its effect on the glycoprotein hormone α-subunit (CGA)/glutathione peroxidase 2 (GPX2)/thyroid-stimulating hormone β-subunit (TSHβ) pathway for thyroid hormone synthesis. MethodsSeventy-two male SD rats were randomized into six groups: normal, model, high-dose (16.7 g·kg-1), medium-dose (8.35 g·kg-1), and low-dose (4.175 g·kg-1) Xiaoyaosan, and fluoxetine (0.001 8 g·kg-1) groups, with 12 rats in each group. The rat model of liver depression and spleen deficiency was induced by chronic restraint stress for 21 days. The intervention groups were treated with Xiaoyaosan decoctions or fluoxetine suspension, respectively. After modeling, hematoxylin-eosin staining was employed to observe morphological changes in the thyroid and pituitary tissue of the rats. Serum levels of triiodothyronine (T3), tetraiodothyronine (T4), and thyroid-stimulating hormone (TSH) were measured by enzyme-linked immunosorbent assay (ELISA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of TSH receptor (TSHR) in the thyroid tissue, thyrotropin-releasing hormone receptor (TRHR) and TSHβ in the pituitary tissue, and thyrotropin-releasing hormone (TRH), CGA, GPX2, and TSHβ in the hypothalamic tissue. ResultsCompared with the normal group, the model group showed significant atrophy and irregularity of thyroid follicles, a marked reduction in colloid secretion, extensive vacuolar degeneration of adenocytes in the anterior pituitary, lowered serum levels of T3, T4, and TSH (P<0.01), and down-regulated mRNA and protein levels of TSHR in the thyroid tissue, TRHR and TSHβ in the pituitary tissue, and TRH, CGA, GPX2, and TSHβ in the hypothalamic tissue (P<0.01). Compared with the model group, high- and medium-dose Xiaoyaosan and fluoxetine alleviated the pathological changes in the thyroid and pituitary tissue, outperforming the low-dose Xiaoyaosan group. Moreover, they elevated the serum levels of T3, T4, and TSH (P<0.05, P<0.01). The serum TSH level was also elevated in the low-dose Xiaoyaosan group (P<0.05). The mRNA and protein levels of TSHR in the thyroid, TRHR and TSHβ in the pituitary, and TRH, CGA, GPX2, and TSHβ in the hypothalamus were up-regulated in the high- and medium-dose Xiaoyaosan groups (P<0.05, P<0.01). Additionally, the mRNA and protein levels of TSHβ in the hypothalamus were up-regulated in the low-dose Xiaoyaosan group (P<0.01). In the fluoxetine group, the mRNA and protein levels of TSHR in the thyroid, TRHR in the pituitary, and TRH, CGA, and GPX2 in the hypothalamus were up-regulated (P<0.05, P<0.01). ConclusionThe downregulation of CGA/GPX2/TSHβ pathway may be one of the biological mechanisms underlying HPT axis dysfunction in the rat model with the syndrome of liver depression and spleen deficiency. Xiaoyaosan may regulate the HPT axis dysfunction by up-regulating the CGA/GPX2/TSHβ pathway.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.Dispersion effect of bone cement after vertebroplasty using individualized unilateral external pedicle approach and bilateral pedicle approach
Lichuang ZHANG ; Wen YANG ; Guangjiang DING ; Peikun LI ; Zhongyu XIAO ; Ying CHEN ; Xue FANG ; Teng ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(4):800-808
BACKGROUND:According to existing clinical studies,vertebroplasty treatment with both the external pedicle approach and the pedicle approach can improve the pain and quality of life of patients with spinal compression fractures.Compared with the pedicle approach,the external pedicle approach has a freer puncture angle,and good bone cement dispersion effect can be obtained by adjusting the puncture angle. OBJECTIVE:To compare the impact of vertebroplasty through individualized unilateral external pedicle approach and bilateral pedicle approach on the treatment of spinal compression fractures by quantifying the dispersion effect of bone cement. METHODS:A total of 80 patients with thoracolumbar compression fracture were divided into two groups by random number table method.The bilateral pedicle group(n=40)underwent vertebroplasty through a bilateral pedicle approach,while the unilateral external pedicle group(n=40)underwent individualized vertebroplasty through a unilateral external pedicle approach.Anteroposterior and lateral X-rays of the affected vertebrae from two groups of patients were photographed to assess effect and type of bone cement dispersion within 3 days after surgery.Visual analog scale score,tenderness threshold around fracture,and Oswestry dysfunction index were assessed before,1,7 days,and 1 month after surgery. RESULTS AND CONCLUSION:(1)Dispersion effect of bone cement in unilateral external pedicle group was better than that in bilateral pedicle group(P<0.001),and the amount of bone cement perfusion was higher than that in bilateral pedicle group(P<0.001).In the bilateral pedicle group,the bone cement dispersion types were mainly concentrated in type Ⅰ and type Ⅲ,while in the unilateral external pedicle group,the bone cement dispersion types were mainly concentrated in type I and type Ⅱ,and there was a significant difference in bone cement dispersion types between the two groups(P<0.001).(2)Postoperative visual analog scale scores and Oswestry disability index of both groups were lower than those before surgery(P<0.001),and postoperative tenderness threshold around fracture showed a trend of decreasing first and then increasing.At the same time point after treatment,there were no significant differences in visual analog scale score,Oswestry disability index,and tenderness threshold around fracture between the two groups(P>0.05).(3)The results indicate that individualized vertebroplasty via unilateral external pedicle approach can achieve better bone cement dispersion,and the treatment effect is consistent with the vertebroplasty via classical bilateral pedicle approach.
4.Application of the combined tumor burden score and platelet-albumin-bilirubin score model for predicting postoperative tumor recurrence in liver transplant recipients with hepatocellular carcinoma
Weidong ZHU ; Junyang XIAO ; Xiaoji QIU ; Lizhi LÜ ; Jianwei CHEN ; Fang YANG
Organ Transplantation 2025;16(4):556-564
Objective To investigate the predictive value of the combined tumor burden score (TBS) and platelet-albumin-bilirubin (PALBI) score model for postoperative tumor recurrence in liver transplant recipients with hepatocellular carcinoma (HCC). Methods The general information of 158 recipients diagnosed with HCC and underwent liver transplantation at the 900th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army from 2008 to 2021 was collected. Lasso regression analysis combined with multivariate Cox regression analysis were used to identify independent risk factors for postoperative tumor recurrence after liver transplantation with HCC. A nomogram prediction model was constructed based on variables selected by Lasso regression analysis, and the predictive performance of the model was verified by calibration curve and clinical decision curve. The optimal cut-off values for postoperative tumor recurrence in liver transplant recipients with HCC were determined by receiver operating characteristic (ROC) curve, and Kaplan-Meier analysis was used to compare survival differences among different groups. Results Among the 158 liver transplant recipients with HCC, 82 experienced tumor recurrence, with a recurrence rate of 51.9% and a median tumor-free survival time of 10 (4, 25) months. Results of Lasso regression analysis and multivariate Cox regression analysis showed that alpha-fetoprotein (AFP) ≥400 ng/mL, TBS and PALBI score were all independent risk factors for postoperative tumor recurrence in liver transplant recipients with HCC (all P<0.05). The combined high TBS-high PALBI score showed the highest predictive value (hazard ratio 6.909, 95% confidence interval 3.067-15.563, P<0.001). A nomogram prediction model was constructed based on six variables selected by Lasso regression analysis. Calibration curve showed good consistency between the model's predicted results and the ideal curve. Decision curve analysis indicated that the nomogram prediction model provided the highest clinical benefit for predicting 1-year tumor-free survival after liver transplantation with HCC. Time-dependent ROC curves at 1, 3 and 5 years after surgery showed that TBS-PALBI model had good predictive performance, with no significant difference in area under the curve (AUC) compared with TBS-PALBI-AFP model. The optimal cut-off values for predicting postoperative tumor recurrence were determined by ROC curve, with a PALBI score cut-off of −2.334 and a TBS cut-off of 5.305. Recipients were divided into a low TBS-low PALBI score group (n=47) and a low/high TBS-low/high PALBI score group (at least one score was high) (n=111). Kaplan-Meier survival analysis showed that the low TBS-low PALBI score group had a higher tumor-free survival rate than the low/high TBS-low/high PALBI score group, with a significant difference (P<0.05). Conclusions TBS-PALBI model provides a novel, simple and effective tool for assessing the prognosis of liver transplant recipients with HCC. The nomogram model constructed based on this has significant advantages in predictive performance and may serve as a reference for guiding individualized treatment plans and improving clinical outcomes.
5.Untargeted Metabolomics Reveals Mechanism of Modified Sinisan in Ameliorating Anxiety-like Behaviors Induced by Chronic Restraint Stress in Mice
Jie ZHAO ; Zhengyu FANG ; He XIAO ; Na GUO ; Hongwei WU ; Hongjun YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):70-79
ObjectiveTo elucidate the potential mechanism of modified Sinisan (MSNS) in alleviating anxiety-like behaviors induced by chronic restraint stress (CRS) in mice at the metabolic level based on serum untargeted metabolomics and identify key metabolites and metabolic pathways regulated by MSNS. MethodsSeventy-two male C57BL/6 mice were randomly assigned into six groups: control, model, high-dose (2.4 g·kg-1) MSNS, medium-dose (1.2 g·kg-1) MSNS, low-dose (0.6 g·kg-1) MSNS, and positive control (fluoxetine, 2.6 mg·kg-1). Except the control group, the other groups were subjected to CRS for the modeling of anxiety. Mice were administrated with corresponding agents by gavage 2 h before daily restraint for 14 days. Anxiety-like behaviors were evaluated by the open field test (OFT), elevated plus maze (EPM) test, and light/dark box (LDB) test. Serum levels of corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH), and corticosterone (CORT) were measured via ELISA to assess stress levels. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to detect 9 metabolites in the brain tissue and serum metabolites. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was adopted to identify differential metabolites (VIP>1.0, P<0.05). MetaboAnalyst 5.0 was used for metabolic pathway enrichment analysis of the differential metabolites. ResultsCompared with the control group, the model group showed reductions in the central activity time and central distance in the OFT (P<0.05), the proportions of open-arm residence time and open-arm residence times in the EPM test (P<0.01), and the proportions of open box activity time and open box activity distance in the LDB test (P<0.05), which were increased in the medium- and high-dose MSNS groups compared with the model group (P<0.05). Compared with the control group, the model group showed elevated levels of CRH, ACTH, and CORT in the serum (P<0.01), and the elevations were diminished in the medium- and high-dose MSNS groups (P<0.05). UPLC-MS results indicated that compared with the control group, the model group presented declined DA, GABA, 5-HIAA, 5-HT, and 5-HT/Trp levels (P<0.05, P<0.01) and raised Glu, NE, Kyn, and Kyn/Trp levels (P<0.05). Compared with the model group, high-dose MSNS increased the GABA, 5-HIAA, and 5-HT/Trp levels (P<0.05) and lowered the Glu and Kyn/Trp levels (P<0.05). Untargeted metabolomics identified that 16 CRS-induced metabolic disturbances were reversed by MSNS. KEGG pathway analysis indicated that MSNS primarily modulated eight core pathways including alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, TCA cycle, unsaturated fatty acid biosynthesis, and tryptophan metabolism. The mechanisms involved multidimensional biological processes, including neurotransmitter homeostasis regulation, TCA cycle energy metabolism optimization, and inflammatory response suppression. ConclusionMSNS alleviates CRS-induced anxiety-like behaviors in mice by mitigating hypothalamic-pituitary-adrenal axis hyperactivity, improving hippocampal neurotransmitter and tryptophan metabolic pathways, and regulating alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, and TCA cycle.
6.Untargeted Metabolomics Reveals Mechanism of Modified Sinisan in Ameliorating Anxiety-like Behaviors Induced by Chronic Restraint Stress in Mice
Jie ZHAO ; Zhengyu FANG ; He XIAO ; Na GUO ; Hongwei WU ; Hongjun YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):70-79
ObjectiveTo elucidate the potential mechanism of modified Sinisan (MSNS) in alleviating anxiety-like behaviors induced by chronic restraint stress (CRS) in mice at the metabolic level based on serum untargeted metabolomics and identify key metabolites and metabolic pathways regulated by MSNS. MethodsSeventy-two male C57BL/6 mice were randomly assigned into six groups: control, model, high-dose (2.4 g·kg-1) MSNS, medium-dose (1.2 g·kg-1) MSNS, low-dose (0.6 g·kg-1) MSNS, and positive control (fluoxetine, 2.6 mg·kg-1). Except the control group, the other groups were subjected to CRS for the modeling of anxiety. Mice were administrated with corresponding agents by gavage 2 h before daily restraint for 14 days. Anxiety-like behaviors were evaluated by the open field test (OFT), elevated plus maze (EPM) test, and light/dark box (LDB) test. Serum levels of corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH), and corticosterone (CORT) were measured via ELISA to assess stress levels. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to detect 9 metabolites in the brain tissue and serum metabolites. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was adopted to identify differential metabolites (VIP>1.0, P<0.05). MetaboAnalyst 5.0 was used for metabolic pathway enrichment analysis of the differential metabolites. ResultsCompared with the control group, the model group showed reductions in the central activity time and central distance in the OFT (P<0.05), the proportions of open-arm residence time and open-arm residence times in the EPM test (P<0.01), and the proportions of open box activity time and open box activity distance in the LDB test (P<0.05), which were increased in the medium- and high-dose MSNS groups compared with the model group (P<0.05). Compared with the control group, the model group showed elevated levels of CRH, ACTH, and CORT in the serum (P<0.01), and the elevations were diminished in the medium- and high-dose MSNS groups (P<0.05). UPLC-MS results indicated that compared with the control group, the model group presented declined DA, GABA, 5-HIAA, 5-HT, and 5-HT/Trp levels (P<0.05, P<0.01) and raised Glu, NE, Kyn, and Kyn/Trp levels (P<0.05). Compared with the model group, high-dose MSNS increased the GABA, 5-HIAA, and 5-HT/Trp levels (P<0.05) and lowered the Glu and Kyn/Trp levels (P<0.05). Untargeted metabolomics identified that 16 CRS-induced metabolic disturbances were reversed by MSNS. KEGG pathway analysis indicated that MSNS primarily modulated eight core pathways including alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, TCA cycle, unsaturated fatty acid biosynthesis, and tryptophan metabolism. The mechanisms involved multidimensional biological processes, including neurotransmitter homeostasis regulation, TCA cycle energy metabolism optimization, and inflammatory response suppression. ConclusionMSNS alleviates CRS-induced anxiety-like behaviors in mice by mitigating hypothalamic-pituitary-adrenal axis hyperactivity, improving hippocampal neurotransmitter and tryptophan metabolic pathways, and regulating alanine/aspartate/glutamate metabolism, butyrate metabolism, arginine-proline metabolism, and TCA cycle.
7.Ibandronate alleviates inflammatory damage in diabetic osteoporosis rats by activating Nrf2/HO-1 signaling pathway
Xiao-Li LIU ; Qin-Fang ZHU ; Jin-Juan LI ; Li-Xin YANG
The Chinese Journal of Clinical Pharmacology 2024;40(2):230-233
Objective To investigate the potential mechanism of ibandronate sodium(IB)in alleviating inflammatory damage in diabetic osteoporosis rats by activating the nuclear transcription factor erythro 2-associated factor 2(Nrf2)/heme oxygenase-1(HO-1)signaling pathway.Methods Intraperitoneal injection of streptozotocin at several low doess was used to induce rat model of diabetes mellitus,then bilateral oophorectomy were used to establish type 2 diabetic osteoporosis(T2DOP)rat model.T2DOP model rats were divided into model group,control group,combined group and experimental-L,-M,-H groups,with 8 rats in each group;another 8 diabetic rats were selected as blank group.Model group was treated with normal saline.Control group was given the same volume of solvent.Experimental-L,-M,-H groups were given 2,10 and 50 mg·kg-1 IB.Combined group was treated with 50 mg·kg-1 IB and 50 mg·kg-1 ML385.Seven groups were administered intraperitoneally once a day for 12 weeks.After 12 weeks of treatment,the bone morphologic parameters were detected by calxanthoprotein double labeling method,the expression levels of Nrf2 and HO-1 pathway protein were detected by Western blot.Results The bone morphologic parameters of experimental-M,-H groups,combined group,control group,model group and blank group were 1.74±0.32,2.94±0.58,0.98±0.32,1.01±0.24,0.98±0.42 and 2.92±0.42;the relative expression levels of Nrf2 protein were 0.99±0.09,1.47±0.12,0.51±0.06,0.52±0.06,0.52±0.05 and 1.48±0.12;the relative expression levels of HO-1 protein were 1.02±0.11,1.33±0.14,0.61±0.05,0.59±0.06,0.62±0.06 and 1.29±0.13,respectively.The above indexes in the control group were statistically different with those in the experimental-M,-H groups(all P<0.05).Conclusion IB repairs bone microstructure and alleviates inflammation in diabetic osteoporosis rats by activating the Nrf2/HO-1 signaling pathway.
8.Protective effect of coumarin on hydrogen peroxide induced oxidative damage in human ovarian granulosa cells by regulating the Keap1/Nrf2/ARE signaling pathway
Huan QIAN ; Xiao-Yang SHEN ; Fang WANG
The Chinese Journal of Clinical Pharmacology 2024;40(4):554-558
Objective To investigate the improvement effect of coumarin on hydrogen peroxide(H2 O2)induced oxidative damage in human ovarian granulosa cells by regulating the Kelch like ECH associated protein 1(Keap1)/nuclear factor E2 related factor 2(Nrf2)/antioxidant response element(ARE)signaling pathway.Methods The human ovarian granulosa cell line COV434 was grouped into control group(normal culture),model group(0.5 mmol·L-1 H2 O2),coumarin group(0.5 mmol·L-1 H2 O2+320 μmol·L 1 coumarin),suppressor group(0.5 mmol·L-1 H2 O2+10 μmol·L-1 Keap1/Nrf2/ARE pathway inhibitor compound 20c)and combination group(0.5 mmol·L-1 H2O2+320 μmol·L-1coumarin+10 μmol·L-1 compound 20c).Cell counting kit 8(CCK-8)method was applied to detect the optical density(OD)of COV434 cells;2',7'-dichlorodihydrofluorescein diacetate(DCFH-DA)fluorescence probe method was applied to detect intracellular reactive oxygen species(ROS);the levels of superoxide dismutase(SOD)and interleukin-18(IL-18)were detected by enzyme linked immunosorbent assay(ELISA);flow cytometry was applied to detect the apoptosis rate of COV434 cells;Western blot was applied to detect the expression of Keap1,Nrf2.Results OD values of blank group,model group,coumarin group,suppressor group and combination group were 1.53±0.20,0.91±0.10,1.35±0.14,0.56±0.05 and 1.06±0.12;the ROS levels were 1.00±0.00,2.24±0.35,1.18±0.13,3.97±0.58 and 2.09±0.20;the SOD levels were(73.43±9.76),(43.32±5.88),(71.54±8.76),(27.64±3.12)and(52.46±6.45)U·mL-1;the levels of IL-18 were(205.90±20.43),(334.56±35.68),(233.24±24.58),(456.54±47.83)and(301.13±37.64)pg·mL-1;the apoptosis rates were(5.96±0.69)%,(19.62±1.77)%,(8.89±0.97)%,(30.23±3.12)%and(17.65±1.07)%;the Keap1 protein levels were 0.95±0.10,0.66±0.08,0.93±0.09,0.31±0.04 and 0.69±0.07;the Nrf2 protein levels were 1.31±0.12,0.76±0.07,1.25±0.14,0.21±0.02 and 0.90±0.11,respectively.The differences between model group with blank group,between model group with coumarin group,suppressor group,between combination group with coumarin group,were also statistically significant(all P<0.05).Conclusion Coumarin may improve H2 O2-induced oxidative damage in human ovarian granulosa cells by up-regulating the Keap1/Nrf2/ARE signaling pathway.
9.Effects of total flavonoids of Oxytropis falcata Bunge on CCl4-induced liver fibrosis in rats
Tian-Yan YANG ; Xin-Huan MA ; Zhi-Wei XU ; Rong-Kun LI ; Fang-Xiong MA ; Bao-Feng HE ; Liang CHEN ; Xiao-Qing CHEN ; Jun ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2073-2077
Objective To investigate the effects of total flavones from Oxytropis falcata Bunge on hepatic fibrosis(HF)induced by carbon tetrachloride and liver transforming growth factor(TGF-β)/Smad signaling pathway.Methods Forty-eight male rats were randomly divided into normal group(intraperitoneal injection of peanut oil,intragastric administration of 0.9%NaCl),model group(intraperitoneal injection of 40%CC14 peanut oil solution induced HF model,intragastric administration of 0.9%NaCl),positive control group(modeling,intragastric administration of 0.2 mg·kg-1 of colchicine),experimental-L,-M,-H groups(modeling,intragastric administration of 100,200 and 400 mg·kg-1 of total flavonoid extract of Oxytropis falcata Bunge),8 individuals in each group,for 4 consecutive weeks.The histopathological changes were observed by hematoxylin-eosin and Masson staining.Serum liver function and liver fibrosis were measured;erum inflammatory factors were detected;fluorescence quantitative polymerase chain reaction(RT-qPCR)was used to determine gene expression in liver.Results The pathological injury of liver tissue in the model group was serious,and a large number of inflammatory factors and collagen fibers were accumulated,while the rest of the treatment groups had different degrees of remission.In normal group,model group,positive control group,experimental-L,-M,-H groups,glutamic-pyruvic transaminase levels were(49.28±12.44),(5 885.42±948.37),(4 454.60±489.27),(4 650.47±843.53),(3 761.75±887.30)and(3 544.90±1 066.75)μg·L-1;glutamic-oxaloacetic transaminase levels were(186.90±46.89),(5 936.23±793.81),(3 971.37±780.28),(4 360.30±863.35),(3 943.10±439.47)and(3 971.38±631.08)μg·L-1;hyaluronic acid levels were(45.08±17.16),(104.32±36.06),(66.83±20.09),(70.30±21.07),(60.00±9.68)and(59.02±10.73)μg·L-1;laminin levels were(23.13±3.89),(60.85±13.66),(35.67±9.92),(39.98±9.39),(36.55±12.21)and(34.68±24.83)μg·L-1;type Ⅲ procollagen level were(24.98±5.34),(82.58±30.14),(40.70±16.14),(51.08±23.21),(43.60±12.48)and(44.20±11.66)p±g·L-1;interleukin(IL)-1β levels were(37.63±1.24),(46.10±3.23),(39.22±2.36),(41.33±0.93),(40.25±2.04)and(39.18±2.23)pg·mL-1;tumor necrosis factor-α levels were(314.58±20.56),(383.71±16.97),(349.00±7.93),(348.88±25.11),(325.75±27.84)and(335.07±21.33)pg·mL-1;TGF-β1 mRNA expression of relative quantity respectively were 1.00±0.00,60.99±15.70,9.61±1.59,7.37±1.09,6.41±0.64,6.87±1.09;Smad7 mRNA relative expression were 1.00±0.00,0.34±0.05,0.21±0.03,0.35±0.02,0.38±0.02,0.42±0.03.The above indexes in the model group were compared with the normal group,and the above indexes in the experimental-M,-H groups were compared with the model group,and the differences were statistically significant(P<0.05,P<0.01,P<0.001).Conclusion Total flavonoids of Oxytropis falcata Bunge have protective effects on CC14-induced liver fibrosis in rats,and the mechanism may be related to the regulation of TGF-β/Smad pathway.
10.Twin pregnancies with chronic hypertension and sleep apnea-hypopnea syndrome treated with continuous positive airway pressure: report of three cases
Xiao LYU ; Jingyu WANG ; Jun WEI ; Jingjing YANG ; Fang HAN ; Guoli LIU
Chinese Journal of Perinatal Medicine 2024;27(3):241-244
This paper reports the maternal and fetal outcomes of three twin pregnancies with chronic hypertension and obstructive sleep apnea-hypopnea syndrome (OSAHS) who were treated with continuous positive airway pressure (CPAP). All three women with twin pregnancies were diagnosed with chronic hypertension. Furthermore, symptoms such as snoring and apnea assisted the diagnosis of OSAHS through polysomnography monitoring. Case 1 was treated with CPAP at 28 gestational weeks. The blood pressure increased gradually after the first month of CPAP treatment, with an elevated urine protein concentration. At 34 gestational weeks, the pregnant woman underwent a cesarean section due to the development of hemolysis, elevated liver enzymes, and low platelet syndrome. Case 2 was treated with CPAP at 11 gestational weeks, with stable blood pressure throughout the pregnancy, and was delivered through cesarean section at 37 weeks of pregnancy. Case 3 started CPAP at 13 gestational weeks for four months, and increased blood pressure and urine protein were observed. Medication brought the blood pressure down, and urine protein became negative. At 32 gestational weeks, a cesarean section was performed because of premature rupture of the membrane. Her CPAP treatment continued till delivery with good maternal and infant outcomes. The treatment outcomes of the three cases suggest that CPAP may prolong the time of blood pressure rise among twin pregnancies where chronic hypertension and OSAHS coexist, which potentially reduces the occurrence of adverse maternal and infant outcomes.

Result Analysis
Print
Save
E-mail