1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.The Role of AMPK in Diabetic Cardiomyopathy and Related Intervention Strategies
Fang-Lian LIAO ; Xiao-Feng CHEN ; Han-Yi XIANG ; Zhi XIA ; Hua-Yu SHANG
Progress in Biochemistry and Biophysics 2025;52(10):2550-2567
Diabetic cardiomyopathy is a distinct form of cardiomyopathy that can lead to heart failure, arrhythmias, cardiogenic shock, and sudden death. It has become a major cause of mortality in diabetic patients. The pathogenesis of diabetic cardiomyopathy is complex, involving increased oxidative stress, activation of inflammatory responses, disturbances in glucose and lipid metabolism, accumulation of advanced glycation end products (AGEs), abnormal autophagy and apoptosis, insulin resistance, and impaired intracellular Ca2+ homeostasis. Recent studies have shown that adenosine monophosphate-activated protein kinase (AMPK) plays a crucial protective role by lowering blood glucose levels, promoting lipolysis, inhibiting lipid synthesis, and exerting antioxidant, anti-inflammatory, anti-apoptotic, and anti-ferroptotic effects. It also enhances autophagy, thereby alleviating myocardial injury under hyperglycemic conditions. Consequently, AMPK is considered a key protective factor in diabetic cardiomyopathy. As part of diabetes prevention and treatment strategies, both pharmacological and exercise interventions have been shown to mitigate diabetic cardiomyopathy by modulating the AMPK signaling pathway. However, the precise regulatory mechanisms, optimal intervention strategies, and clinical translation require further investigation. This review summarizes the role of AMPK in the prevention and treatment of diabetic cardiomyopathy through drug and/or exercise interventions, aiming to provide a reference for the development and application of AMPK-targeted therapies. First, several classical AMPK activators (e.g., AICAR, A-769662, O-304, and metformin) have been shown to enhance autophagy and glucose uptake while inhibiting oxidative stress and inflammatory responses by increasing the phosphorylation of AMPK and its downstream target, mammalian target of rapamycin (mTOR), and/or by upregulating the gene expression of glucose transporters GLUT1 and GLUT4. Second, many antidiabetic agents (e.g., teneligliptin, liraglutide, exenatide, semaglutide, canagliflozin, dapagliflozin, and empagliflozin) can promote autophagy, reverse excessive apoptosis and autophagy, and alleviate oxidative stress and inflammation by enhancing AMPK phosphorylation and its downstream targets, such as mTOR, or by increasing the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor‑α (PPAR‑α). Third, certain anti-anginal (e.g., trimetazidine, nicorandil), anti-asthmatic (e.g., farrerol), antibacterial (e.g., sodium houttuyfonate), and antibiotic (e.g., minocycline) agents have been shown to promote autophagy/mitophagy, mitochondrial biogenesis, and inhibit oxidative stress and lipid accumulation via AMPK phosphorylation and its downstream targets such as protein kinase B (PKB/AKT) and/or PPAR‑α. Fourth, natural compounds (e.g., dihydromyricetin, quercetin, resveratrol, berberine, platycodin D, asiaticoside, cinnamaldehyde, and icariin) can upregulate AMPK phosphorylation and downstream targets such as AKT, mTOR, and/or the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting anti-inflammatory, anti-apoptotic, anti-pyroptotic, antioxidant, and pro-autophagic effects. Fifth, moderate exercise (e.g., continuous or intermittent aerobic exercise, aerobic combined with resistance training, or high-intensity interval training) can activate AMPK and its downstream targets (e.g., acetyl-CoA carboxylase (ACC), GLUT4, PPARγ coactivator-1α (PGC-1α), PPAR-α, and forkhead box protein O3 (FOXO3)) to promote fatty acid oxidation and glucose uptake, and to inhibit oxidative stress and excessive mitochondrial fission. Finally, the combination of liraglutide and aerobic interval training has been shown to activate the AMPK/FOXO1 pathway, thereby reducing excessive myocardial fatty acid uptake and oxidation. This combination therapy offers superior improvement in cardiac dysfunction, myocardial hypertrophy, and fibrosis in diabetic conditions compared to liraglutide or exercise alone.
3.Bioequivalence study of telmisartan tablets in Chinese healthy subjects
Cheng SUN ; Yan ZHANG ; Hong-Xia FANG ; Gui-Ying CHEN ; Xiao-Juan ZHANG ; Hong-Xun SUN ; Bin JIANG
The Chinese Journal of Clinical Pharmacology 2024;40(2):249-253
Objective To evaluation the bioequivalence of telmisartan tablets(80 mg)between test formulation and reference formulation in Chinese healthy subjects.Methods A single-center,randomized,open-label,two-preparations,single administration,partial repeat crossover of three sequences in three postprandial cycles and complete repeat crossover of two sequences in four fasting cycles,bioequivalence test was designed.Chinese healthy subjects were included in the bioequivalence trial,with 33 randomly assigned to the postprandial group and 32 randomly assigned to the fasting group.In each period,blood samples was collected before and after administration.The plasma concentration of the drug was determined by LC-MS/MS,using WinNonlin version 8.3 calculate the pharmacokinetic parameters and perform a statistical analysis using SAS version 9.4.Results The main pharmacokinetic parameters of telmisartan tablets after oral administration of test or reference were as follows.Fasting group Cmax were(556.10±456.06)and(580.99±533.50)ng·mL-1;AUC0-t were(3 475.15±3 785.16)and(3 450.54±3 681.02)ng·mL-1·h;AUC0-∞ were(3 214.06±2 272.06)and(3 194.84±2 187.45)ng·mL-1·h.The 90%confidence intervals of the geometric mean ratio of Cmax,AUC0-t,AUC0-∞ were within the requirements of the equivalent range of bioequivalence(80.00%-125.00%).Postprandial group Cmax were(299.26±124.72)and(291.29±126.34)ng·mL-1;AUC0-t were(3 682.24±2 799.72)and(3 636.71±2 158.42)ng·mL-1·h;AUC0-were(3 544.53±1 553.06)and(3 969.38±2 528.22)ng·mL-1·h.The 90%confidence intervals of the geometric mean ratio of Cmax,AUC0-t,AUC0-∞ were within the requirements of the equivalent range of bioequivalence(80.00%-125.00%).Conclusion Under fasting and fed conditions,two kinds of telmisartan tablets are bioequivalent in Chinese healthy subjects.
4.Effects of radiation on pharmacokinetics
Jie ZONG ; Hai-Hui ZHANG ; Gui-Fang DOU ; Zhi-Yun MENG ; Ruo-Lan GU ; Zhuo-Na WU ; Xiao-Xia ZHU ; Xuan HU ; Hui GAN
The Chinese Journal of Clinical Pharmacology 2024;40(13):1996-2000
Radiation mainly comes from medical radiation,industrial radiation,nuclear waste and atmospheric ultraviolet radiation,etc.,radiation is divided into ionizing radiation and non-ionizing radiation.Studying the effects of ionizing and non-ionizing radiation on drug metabolism,understanding the absorption and distribution of drugs in the body after radiation and the speed of elimination under radiation conditions can provide reasonable guidance for clinical medication.This article reviews the effects of radiation on the pharmacokinetics of different drugs,elaborates the changes of different pharmacokinetics under radiation state,and discusses the reasons for the changes.
5.Effects of matrine on the proliferation,migration,and invasion of neuroblastoma cells
Nan-Jing LIU ; Dong-Juan WANG ; Fang-Jie LIU ; Wen-Xia HUANG ; Lin ZOU ; Xiao-Yan HE
The Chinese Journal of Clinical Pharmacology 2024;40(14):2048-2052
Objective To observe the effects of matrine on the proliferation,migration,and invasion of human neuroblastoma cells,and to investigate its potential mechanism.Methods This study was divided into AS experimental group(SK-N-AS cells treated with IC50 concentration of matrine),AS blank group(SK-N-AS cells cultured under normal conditions),AS control group(SK-N-AS cells treated with an equal amount of dimethyl sulfoxide),DZ experimental group(SK-N-DZ cells treated with IC50 concentration of matrine),DZ blank group(SK-N-DZ cells cultured under normal conditions),and DZ control group(SK-N-DZ cells treated with an equal amount of dimethyl sulfoxide).Scratch assay and Transwell chamber were used to measure the effect of matrine on the migration and invasion.The expression of E-cadherin,N-cadherin and Vimentin were tested by Western blot.Results After different intervention,the migration percentages of AS blank group,AS control group,AS experimental group,DZ blank group,DZ control group and DZ experimental group were(66.32±3.12)%,(65.27±3.44)%,(23.73±0.79)%,(46.25±4.68)%,(44.15±5.60)%and(16.77±3.52)%,respectively;the number of invasive cells were 870.45±19.32,865.32±23.39,492.74±16.81,1 198.10±43.71,1 203.03±71.91 and 891.69±42.62,respectively;the expression levels of E-cadherin protein were(100.00±11.72)%,(105.65±13.11)%,(477.20±29.71)%,(100.00±12.54)%,(97.78±12.77)%and(240.53±12.23)%,respectively;the expression levels of N-cadherin protein were(100.00±15.44)%,(103.90±10.76)%,(43.52±9.96)%,(100.00±10.12)%,(104.95±10.49)%and(38.39±8.70)%,respectively;Vimentin protein expression levels were(100.00±9.51)%,(97.39±11.33)%,(59.13±10.25)%,(100.00±13.20)%,(96.27±11.01)%and(47.67±9.48)%,respectively.There were statistically significant differences in the above indexes between the AS group and the AS blank group(P<0.01,P<0.001),and there were statistically significant differences between the above indexes in the DZ group and the DZ blank group(P<0.01,P<0.001).Conclusion Matrine inhibits the proliferation,migration,and invasion of neuroblastoma SK-N-AS and SK-N-DZ cells,potentially through suppressing epithelial-mesenchymal transition.
6.Explore the Mechanism of Limonin Against Hepatic Fibrosis Based on Network Pharmacology and Animal Experiments
Yuhong XIAO ; Zhenxiang AN ; Fang WANG ; Jinwen WANG ; Xia SHAO ; Ying YUAN
Chinese Journal of Modern Applied Pharmacy 2024;41(4):460-468
OBJECTIVE
To explore the mechanism of limonin treating in hepatic fibrosis through network pharmacology, and validate its mechanism by molecular docking and animal experiments.
METHODS
Firstly, the targets of limonin and hepatic fibrosis were screened from the SwissTargetPrediction, GeneCards and DisGeNet database, etc. Meanwhile, the common targets of limonin and hepatic fibrosis were obtained from the bioinformatics website. The protein protein interaction network of common target was constructed by using STRING database and Cytoscape software, and the CytoNCA plug-in was used to screen core targets. And then the enrichment analysis of GO and KEGG on the common target was performed by Metascape database. Thereby, the possible mechanism of limonin against hepatic fibrosis were predicted. Finally, the AutoDock Vina was used for molecular docking verification, and the prediction results of network pharmacology were verified by animal experiments.
RESULTS
The prediction results indicated that limonin might acted on 86 targets including AKT1, VEGFA and HIF1A, and participated in biological processes including hormone response, protein phosphorylation, angiogenesis, and PI3K-Akt pathway, HIF-1 pathway, VEGF pathway and other signaling pathways related to hepatic fibrosis. The results of protein protein interaction network topology analysis showed that the 11 core targets including AKT1, VEGFA, HIF1A and PIK3CA, etc. Molecular docking results showed that limonin had strong affinity and relatively stable binding conformation with the core targets. In the animal experiments, compared with the model group, hyaluronidase(HA) and laminin(LN) in rat serume in high-dose group of limonin(LH) and low-dose group of limonin(LL)(except for LN in LL group) were declined(P<0.01 or P<0.05), and the degree of inflammation and hepatic fibrosis were relieved to different degrees in liver tissue of the LH group and LL group; Western blotting and qPCR detection showed that protein and mRNA expression levels of AKT, HIF-1α and VEGF(except for VEGF in LL group) was down-regulated in the LH group and LL group(P<0.01 or P<0.05).
CONCLUSION
Limonin may acts on AKT1, VEGFA, HIF1A and other core targets to treat hepatic fibrosis angiogenesis, which may be related to the inhibition of AKT/HIF-1α/VEGF signaling pathway.
7.Therapeutic Efficacy of Wuhu Decoction Plus Tingli Dazao Xiefei Decoction Combined with Budesonide Atomization for Children with Bronchopneumonia and Its Effects on Inflammatory Response
Shen-Hong TANG ; Yi WU ; Xia YU ; Xiao-Fang WANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):900-905
Objective To investigate the clinical efficacy of Wuhu Decoction plus Tingli Dazao Xiefei Decoction combined with Budesonide atomization for the treatment of pediatric bronchopneumonia with phlegm-heat obstructing the lung syndrome,and to observe its effect on inflammatory response.Methods Seventy children with bronchopneumonia of phlegm-heat obstructing the lung type were randomly divided into an observation group and a control group,with 35 cases in each group.The children in the control group were treated with atomized inhalation of Budesonide suspension,and the children in the observation group were treated with Wuhu Decoction plus Tingli Dazao Xiefei Decoction orally on the basis of treatment for the control group.Both groups were treated for a period of 7 days.The changes in the traditional Chinese medicine(TCM)syndrome scores and the serum levels of inflammatory factors of interleukin 6(IL-6),procalcitonin(PCT),and hypersensitive C-reactive protein(hs-CRP)in the two groups were observed before and after the treatment.Moreover,the clinical efficacy,time for the relief of symptoms and signs,and the incidence of adverse reactions in the two groups were compared.Results(1)After 7 days of treatment,the total effective rate of the observation group was 91.43%(32/35),and that of the control group was 71.43%(25/35).The intergroup comparison(tested by chi-square test)showed that the therapeutic efficacy of the observation group was significantly superior to that of the control group(P<0.05).(2)After treatment,the TCM syndrome scores of the children in both groups were significantly lower than those before treatment(P<0.05),and the decrease in the observation group was significantly superior to that in the control group(P<0.01).(3)After treatment,the time for the relief of symptoms and signs such as wheezing,cough,lung rales,constipation and fever in the observation group was significantly shortened compared with that in the control group(P<0.01).(4)After treatment,the serum IL-6,PCT and hs-CRP levels in both groups were significantly lower than those before treatment(P<0.05),and the reduction in the observation group was significantly superior to that in the control group(P<0.01).(5)The incidence of adverse reactions in the observation group was 5.71%(2/35)and that in the control group was 8.57%(3/35),while the difference was not statistically significant between the two groups(P>0.05).Conclusion Wuhu Decoction plus Tingli Dazao Xiefei Decoction combined with Budesonide atomization exert certain effect for the treatment of pediatric bronchopneumonia with phlegm-heat obstructing the lung syndrome,which can effectively relieve the clinical symptoms and alleviate the inflammatory response of the children.
8.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.
9.A multicenter retrospective cohort study on the attributable risk of patients with Acinetobacter baumannii sterile body fluid infection
Lei HE ; Dao-Bin JIANG ; Ding LIU ; Xiao-Fang ZHENG ; He-Yu QIU ; Shu-Mei WU ; Xiao-Ying WU ; Jin-Lan CUI ; Shou-Jia XIE ; Qin XIA ; Li HE ; Xi-Zhao LIU ; Chang-Hui SHU ; Rong-Qin LI ; Hong-Ying TAO ; Ze-Fen CHEN
Chinese Journal of Infection Control 2024;23(1):42-48
Objective To investigate the attributable risk(AR)of Acinetobacter baumannii(AB)infection in criti-cally ill patients.Methods A multicenter retrospective cohort study was conducted among adult patients in inten-sive care unit(ICU).Patients with AB isolated from sterile body fluid and confirmed with AB infection in each cen-ter were selected as the infected group.According to the matching criteria that patients should be from the same pe-riod,in the same ICU,as well as with similar APACHE Ⅱ score(±5 points)and primary diagnosis,patients who did not infect with AB were selected as the non-infected group in a 1:2 ratio.The AR was calculated.Results The in-hospital mortality of patients with AB infection in sterile body fluid was 33.3%,and that of non-infected group was 23.1%,with no statistically significant difference between the two groups(P=0.069).The AR was 10.2%(95%CI:-2.3%-22.8%).There is no statistically significant difference in mortality between non-infected pa-tients and infected patients from whose blood,cerebrospinal fluid and other specimen sources AB were isolated(P>0.05).After infected with AB,critically ill patients with the major diagnosis of pulmonary infection had the high-est AR.There was no statistically significant difference in mortality between patients in the infected and non-infec-ted groups(P>0.05),or between other diagnostic classifications.Conclusion The prognosis of AB infection in critically ill patients is highly overestimated,but active healthcare-associated infection control for AB in the ICU should still be carried out.
10.Nutritional status of pediatric patients undergoing allogeneic hematopoietic stem cell transplantation
Mei YAN ; Wei-Bing TANG ; Yong-Jun FANG ; Jie HUANG ; Ting ZHU ; Jin-Yu FU ; Xiao-Na XIA ; Chang-Wei LIU ; Yuan-Yuan WAN ; Jian PAN
Parenteral & Enteral Nutrition 2024;31(5):257-261
Objective:To observe the changes in the nutritional status of pediatric patients after allogeneic hematopoietic stem cell transplantation(allo-HSCT)for one year,and to analyze the risk factors.Methods:We collected data from 88 pediatric patients who underwent allo-HSCT at the Department of Hematology and Oncology in Children's Hospital of Nanjing Medical University between May 2018 and November 2022.All pediatric patients underwent nutritional status analysis before transplantation,at enrollment,3 months,6 months and 1 year after allo-HSCT.Linear regression model was used to analyze the risk factors for growth rate.Results:The body mass index Z score(BMI-Z)before allo-HSCT was(0.096±1.349),and decreased to(-0.258±1.438)、(-0.715±1.432)、(-0.584±1.444)at enrollment,3 months,6 months after allo-HSCT,and(-0.130±1.317)at 1 year after allo-HSCT(P<0.001).There was no significant change in BMI-Z between pre-transplantation and 1 year after transplantation(P=1.000).Height for age Z score(HAZ)before transplantation was(0.137±1.305)and decreased to(-0.083±1.267)、(-0.221±1.299)、(-0.269±1.282)in 3 months,6 months and 1 year after allo-HSCT(P<0.001).Multivariate linear regression showed that age≥10 years old(P=0.015)and chronic graft-versus-host disease(cGVHD)(P=0.005)were independent risk factors for change in HAZ.Conclusion:The BMI-Z of pediatric patients treated with allo-HSCT returned to the pre-transplantation level after one year,while HAZ continued to decrease.Allo-HSCT may cause impaired growth rate in pediatric patients.Attention should be paid to HAZ changes in pediatric patients before and after allo-HSCT,especially in pediatric patients≥10 years old of age and those with cGVHD.Effective nutritional intervention should be provided in time.


Result Analysis
Print
Save
E-mail