1.Development of cardiovascular clinical research data warehouse and real-world research.
Dan-Dan LI ; Ya-Ni YU ; Zhi-Jun SUN ; Chang-Fu LIU ; Tao CHEN ; Dong-Kai SHAN ; Xiao-Dan TUO ; Jun GUO ; Yun-Dai CHEN
Journal of Geriatric Cardiology 2025;22(7):678-689
BACKGROUND:
Medical informatics accumulated vast amounts of data for clinical diagnosis and treatment. However, limited access to follow-up data and the difficulty in integrating data across diverse platforms continue to pose significant barriers to clinical research progress. In response, our research team has embarked on the development of a specialized clinical research database for cardiology, thereby establishing a comprehensive digital platform that facilitates both clinical decision-making and research endeavors.
METHODS:
The database incorporated actual clinical data from patients who received treatment at the Cardiovascular Medicine Department of Chinese PLA General Hospital from 2012 to 2021. It included comprehensive data on patients' basic information, medical history, non-invasive imaging studies, laboratory test results, as well as peri-procedural information related to interventional surgeries, extracted from the Hospital Information System. Additionally, an innovative artificial intelligence (AI)-powered interactive follow-up system had been developed, ensuring that nearly all myocardial infarction patients received at least one post-discharge follow-up, thereby achieving comprehensive data management throughout the entire care continuum for high-risk patients.
RESULTS:
This database integrates extensive cross-sectional and longitudinal patient data, with a focus on higher-risk acute coronary syndrome patients. It achieves the integration of structured and unstructured clinical data, while innovatively incorporating AI and automatic speech recognition technologies to enhance data integration and workflow efficiency. It creates a comprehensive patient view, thereby improving diagnostic and follow-up quality, and provides high-quality data to support clinical research. Despite limitations in unstructured data standardization and biological sample integrity, the database's development is accompanied by ongoing optimization efforts.
CONCLUSION
The cardiovascular specialty clinical database is a comprehensive digital archive integrating clinical treatment and research, which facilitates the digital and intelligent transformation of clinical diagnosis and treatment processes. It supports clinical decision-making and offers data support and potential research directions for the specialized management of cardiovascular diseases.
2.In vitro chondrogenesis of the goat bone marrow mesenchymal stem cells directed by chondrocytes in monolayer and 3-dimetional indirect co-culture system.
Jian-Wei LI ; Xiao-Lei GUO ; Chun-la HE ; Yong-Hua TUO ; Zhao WANG ; Jun WEN ; Dan JIN
Chinese Medical Journal 2011;124(19):3080-3086
BACKGROUNDCartilage injury has a very poor capacity for intrinsic regeneration. The cell-based treatment strategy for the cartilage repair using differentiated bone marrow mesenchymal stem cells (BMSCs) is, however, a promising approach to the chondral repair. This study was aimed to explore the chondrogenic potential of the goat BMSCs in the Transwell co-culture system and the poly-laetide-co-glycolide (PLGA) scaffolds.
METHODSThe BMSCs were isolated from the goat iliac crest while the chondrocytes were obtained from the goat's last costal cartilage. In the Transwell co-culture system, the BMSCs co-cultured with chondrocytes were designed as group A, whereas the goat's BMSCs induced with the chondrogenic medium were group B. Both groups A and B were the experimental groups, while group C that only contained BMSCs was the control group. In the PLGA scaffolds co-culture system, BMSCs were seeded into the PLGA scaffolds, which were suspended in the 24-well plate, and the control group was established by presence or absence of chondrocytes at the bottom of the 24-well plate. Toluidine blue staining, Alcian blue staining, collagen II immunofluoresence, collagen II immunochemical staining, collagen I, collagen II, COL2a Q-PCR and osteopontin Q-PCR were used to examine the chondrogenic conditions as well as the expressions of chondrogenic and osteogenic genes.
RESULTSCells isolated from the aspirates of the goat bone marrow proliferated rapidly and gained characteristics of stem cells in Passage 4. However, the differentiations of chondrocytes were not apparent in Passage 3. The results from Toluidine blue staining, collagen II immunofluoresence and PCR showed the transformation of BMSCs to chondrocytes in the Transwell co-culture system and PLGA scaffolds. Although the cartilage gene expressions were upgraded in both chondrogenesis group and co-culture system, the osteopontin gene expression, which represents osteogenic level, was also up-regulated.
CONCLUSIONSThe Transwell co-culture system and the PLGA scaffolds co-culture system can promote the chondrogenic differentiation of the goat's BMSCs, while up-regulated osteopontin gene expression in the Transwell co-culture system implies the osteogenic potential of BMSCs.
Animals ; Bone Marrow Cells ; physiology ; Cell Culture Techniques ; methods ; Chondrocytes ; physiology ; Chondrogenesis ; physiology ; Coculture Techniques ; Goats ; Mesenchymal Stromal Cells ; physiology ; Tissue Engineering ; methods ; Tissue Scaffolds
3.In vitro chondrogenesis of the goat bone marrow mesenchymal stem cells directed by chondrocytes in monolayer and 3-dimetional indirect co-culture system
Jian-Wei LI ; Xiao-Lei GUO ; Chun-La HE ; Yong-Hua TUO ; Zhao WANG ; Jun WEN ; Dan JIN
Chinese Medical Journal 2011;125(19):30803086-30803086
Background Cartilage injury has a very poor capacity for intrinsic regeneration. The cell-based treatment strategy for the cartilage repair using differentiated bone marrow mesenchymal stem cells (BMSCs) is, however, a promising approach to the chondral repair. This study was aimed to explore the chondrogenic potential of the goat BMSCs in the Transwell co-culture system and the poly-laetide-co-glycolide (PLGA) scaffolds.Methods The BMSCs were isolated from the goat iliac crest while the chondrocytes were obtained from the goat's last costal cartilage. In the Transwell co-culture system, the BMSCs co-cultured with chondrocytes were designed as group A,whereas the goat's BMSCs induced with the chondrogenic medium were group B. Both groups A and B were the experimental groups, while group C that only contained BMSCs was the control group. In the PLGA scaffolds co-culture system, BMSCs were seeded into the PLGA scaffolds, which were suspended in the 24-well plate, and the control group was established by presence or absence of chondrocytes at the bottom of the 24-well plate. Toluidine blue staining,Alcian blue staining, collagen Ⅱ immunofluoresence, collagen Ⅱ immunochemical staining, collagen Ⅰ, collagen Ⅱ, COL2a Q-PCR and osteopontin Q-PCR were used to examine the chondrogenic conditions as well as the expressions of chondrogenic and osteogenic genes.Results Cells isolated from the aspirates of the goat bone marrow proliferated rapidly and gained characteristics of stem cells in Passage 4. However, the differentiations of chondrocytes were not apparent in Passage 3. The results from Toluidine blue staining, collagen Ⅱ immunofluoresence and PCR showed the transformation of BMSCs to chondrocytes in the Transwell co-culture system and PLGA scaffolds. Although the cartilage gene expressions were upgraded in both chondrogenesis group and co-culture system, the osteopontin gene expression, which represents osteogenic level, was also up-regulated.Conclusions The Transwell co-culture system and the PLGA scaffolds co-culture system can promote the chondrogenic differentiation of the goat's BMSCs, while up-regulated osteopontin gene expression in the Transwell co-culture system implies the osteogenic potential of BMSCs.

Result Analysis
Print
Save
E-mail