1.miR-375 Attenuates The Migration and Invasion of Osteosarcoma Cells by Targeting MMP13
Zhong LIU ; Lei HE ; Jian XIAO ; Qing-Mei ZHU ; Jun XIAO ; Yong-Ming YANG ; Yong-Jian LUO ; Zhong-Cheng MO ; Yi-Qun ZHANG ; Ming LI
Progress in Biochemistry and Biophysics 2024;51(5):1203-1214
ObjectiveTo explore whether miR-375 regulates the malignant characteristics of osteosarcoma (OS) by influencing the expression of MMP13. MethodsPlasmid DNAs and miRNAs were transfected into OS cells and HEK293 cells using Lipofectamine 3000 reagent. Real-time quantitative polymerase chain reaction was performed to measure the expression of miR-375 and MMP13 in OS patients and OS cells. Western blot was performed to analyze the MMP13 protein in the patients with OS and OS cells. The targeting relationship between miR-375 and MMP13 was analyzed by luciferase assay. Migration and invasion were analysed by heal wound and transwell assays, respectively. ResultsmiR-375 expression in OS tissues was lower than that in normal tissues. The expression of MMP13 was upregulated in OS tissues. MMP13 expression was negatively correlated withmiR-375 expression in patients with OS. Migration and invasion were significantly inhibited in OS cells with the miR-375 mimic compared with OS cells with the miRNA control. MMP13 partially reversed the inhibition of migration and invasion induced by miR-375 in the OS cells. ConclusionmiR-375 attenuates migration and invasion by downregulating the expression of MMP13 in OS cells.
2.Tumor Therapy: Targeted Substances Metabolism Reprogramming Induces Tumor Ferroptosis
Jin-Ping ZHANG ; Yue-Qing WANG ; Mo WANG ; Xin-Yue WANG ; Xiao-Qin MOU ; Xi ZHENG ; Chuang CHENG ; Jing HE ; Li-Li ZOU ; Xiao-Wen LIU
Progress in Biochemistry and Biophysics 2024;51(7):1540-1550
There are huge differences between tumor cells and normal cells in material metabolism, and tumor cells mainly show increased anabolism, decreased catabolism, and imbalance in substance metabolism. These differences provide the necessary material basis for the growth and reproduction of tumor cells, and also provide important targets for the treatment of tumors. Ferroptosis is an iron-dependent form of cell death characterized by an imbalance of iron-dependent lipid peroxidation and lipid membrane antioxidant systems in cells, resulting in excessive accumulation of lipid peroxide, causing damage to lipid membrane structure and loss of function, and ultimately cell death. The regulation of ferroptosis involves a variety of metabolic pathways, including glucose metabolism, lipid metabolism, amino acid metabolism, nucleotide metabolism and iron metabolism. In order for tumor cells to grow rapidly, their metabolic needs are more vigorous than those of normal cells. Tumor cells are metabolically reprogrammed to meet their rapidly proliferating material and energy needs. Metabolic reprogramming is mainly manifested in glycolysis and enhancement of pentose phosphate pathway, enhanced glutamine metabolism, increased nucleic acid synthesis, and iron metabolism tends to retain more intracellular iron. Metabolic reprogramming is accompanied by the production of reactive oxygen species and the activation of the antioxidant system. The state of high oxidative stress makes tumor cells more susceptible to redox imbalances, causing intracellular lipid peroxidation, which ultimately leads to ferroptosis. Therefore, in-depth study of the molecular mechanism and metabolic basis of ferroptosis is conducive to the development of new therapies to induce ferroptosis in cancer treatment. Ferroptosis, as a regulated form of cell death, can induce ferroptosis in tumor cells by pharmacologically or genetically targeting the metabolism of substances in tumor cells, which has great potential value in tumor treatment. This article summarizes the effects of cellular metabolism on ferroptosis in order to find new targets for tumor treatment and provide new ideas for clinical treatment.
3.Toxicity and Mechanism of Di-(2-ethylhexyl) Phthalate on Testis
An-Ni FENG ; Ren-Ren SUN ; Yu-Bo XIAO ; Zhao-Ming ZENG ; Zhong-Cheng MO ; Yuan-Jie XIE
Progress in Biochemistry and Biophysics 2024;51(3):555-563
Di-(2-ethylhexyl) phthalate (DEHP) is currently one of the most widely used plasticizers, widely found in all kinds of items, such as children’s toys and food packaging materials, but also added to wallpaper, cable protective agents and other building decoration materials. DEHP is toxic and absorbed by the human body through respiratory tract, digestive tract and skin contact, which can cause damage to multiple systems, especially the male reproductive system, and testis is an important target organ. Oxidative stress injury is the core mechanism of spermatogenesis disorder caused by DEHP. DEHP exposure can cause oxidative stress or reactive oxygen species (ROS) increase in germ cells, and on this basis, promote cell apoptosis or cause excessive autophagy. The toxicity of DEHP to Leydig cells is mainly to interfere with the synthesis of steroid hormones. For Sertoli cells, ferroptosis and destruction of the blood-testis barrier are common injury mechanisms. In addition, gene methylation caused by DEHP not only affects the spermatogenic process, but also has epigenetic effects on offspring. In this paper, we reviewed the pathological damage, germ cell toxicity and epigenetic effects of DEHP on testis, and focused on the damage and molecular mechanism on testicular spermatogenic cells, Leydig cells and Sertoli cells. Future research is required to elucidate the body’s clearance mechanism and treatment plan after exposure to DEHP and whether DEHP will damage the function of myoid cells. It is hoped that this can provide new ideas for prevention and treatment of male reproductive disorders resulting from long-term exposure to plastic products.
4.Dynamic monitoring of plasma Epstein-Barr Virus DNA load can predict the occurrence of lymphoproliferative disorders after haploidentical hematopoietic stem cell transplantation.
Jing CHEN ; Yu Qian SUN ; Lan Ping XU ; Xiao Hui ZHANG ; Kai Yan LIU ; Xiao Dong MO ; Yi Fei CHENG ; Xiao Jun HUANG ; Yu WANG
Chinese Journal of Hematology 2023;44(4):284-288
Objective: To determine the optimal cutoff value of Epstein-Barr virus (EBV) DNA load that can assist in the diagnosis of post-transplant lymphoproliferative disease (PTLD) after haploidentical hematopoietic stem cell transplantation (haplo-HSCT) . Methods: The data of patients with EBV infection after haplo-HSCT from January to December 2016 were retrospectively analyzed. Through constructing the receiver operating characteristic (ROC) curve and calculating the Youden index to determine the cutoff value of EBV-DNA load and its duration of diagnostic significance for PTLD. Results: A total of 94 patients were included, of whom 20 (21.3% ) developed PTLD, with a median onset time of 56 (40-309) d after transplantation. The median EBV value at the time of diagnosis of PTLD was 70,400 (1,710-1,370,000) copies/ml, and the median duration of EBV viremia was 23.5 (4-490) d. Binary logistic regression was used to analyze the peak EBV-DNA load (the EBV-DNA load at the time of diagnosis in the PTLD group) and duration of EBV viremia between the PTLD and non-PTLD groups. The results showed that the difference between the two groups was statistically significant (P=0.018 and P=0.001) . The ROC curve was constructed to calculate the Youden index, and it was concluded that the EBV-DNA load ≥ 41 850 copies/ml after allogeneic hematopoietic stem cell transplantation had diagnostic significance for PTLD (AUC=0.847) , and the sensitivity and specificity were 0.611 and 0.932, respectively. The duration of EBV viremia of ≥20.5 d had diagnostic significance for PTLD (AUC=0.833) , with a sensitivity and specificity of 0.778 and 0.795, respectively. Conclusion: Dynamic monitoring of EBV load in high-risk patients with PTLD after haplo-HSCT and attention to its duration have important clinical significance, which can help clinically predict the occurrence of PTLD in advance and take early intervention measures.
Humans
;
Epstein-Barr Virus Infections/diagnosis*
;
Herpesvirus 4, Human/genetics*
;
Retrospective Studies
;
Viremia
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Lymphoproliferative Disorders/etiology*
;
DNA, Viral
;
Viral Load
5.Efficacy and safety of secondary allogeneic hematopoietic stem cell transplantation in 70 patients with recurrent hematologic malignancies after transplantation.
Ting Ting HAN ; Yang LIU ; Yao CHEN ; Yuan Yuan ZHANG ; Hai Xia FU ; Chen Hua YAN ; Xiao Dong MO ; Feng Rong WANG ; Jing Zhi WANG ; Wei HAN ; Yuhong CHEN ; Huan CHEN ; Yuqian SUN ; Yi Fei CHENG ; Yu WANG ; Xiao Hui ZHANG ; Xiao Jun HUANG ; Lan Ping XU
Chinese Journal of Hematology 2023;44(6):458-464
Objectives: To investigate the role of donor change in the second hematopoietic stem cell transplantation (HSCT2) for hematological relapse of malignant hematology after the first transplantation (HSCT1) . Methods: We retrospectively analyzed patients with relapsed hematological malignancies who received HSCT2 at our single center between Mar 1998 and Dec 2020. A total of 70 patients were enrolled[49 males and 21 females; median age, 31.5 (3-61) yr]. Results: Forty-nine male and 21 female patients were enrolled in the trial. At the time of HSCT2, the median age was 31.5 (3-61) years old. Thirty-one patients were diagnosed with acute myeloid leukemia, 23 patients with ALL, and 16 patients with MDS or other malignant hematology disease. Thirty patients had HSCT2 with donor change, and 40 patients underwent HSCT2 without donor change. The median relapse time after HSCT1 was 245.5 (26-2 905) days. After HSCT2, 70 patients had neutrophil engraftment, and 62 (88.6%) had platelet engraftment. The cumulative incidence of platelet engraftment was (93.1±4.7) % in patients with donor change and (86.0±5.7) % in patients without donor change (P=0.636). The cumulative incidence of CMV infection in patients with and without donor change was (64.0±10.3) % and (37.0±7.8) % (P=0.053), respectively. The cumulative incidence of grade Ⅱ-Ⅳ acute graft versus host disease was (19.4±7.9) % vs (31.3±7.5) %, respectively (P=0.227). The cumulative incidence of TRM 100-day post HSCT2 was (9.2±5.1) % vs (6.7±4.6) % (P=0.648), and the cumulative incidence of chronic graft versus host disease at 1-yr post-HSCT2 was (36.7±11.4) % versus (65.6±9.1) % (P=0.031). With a median follow-up of 767 (271-4 936) days, 38 patients had complete remission (CR), and three patients had persistent disease. The CR rate was 92.7%. The cumulative incidences of overall survival (OS) and disease-free survival (DFS) 2 yr after HSCT2 were 25.8% and 23.7%, respectively. The cumulative incidence of relapse, OS, and DFS was (52.6±11.6) % vs (62.4±11.3) % (P=0.423), (28.3±8.6) % vs (23.8±7.5) % (P=0.643), and (28.3±8.6) % vs (22.3±7.7) % (P=0.787), respectively, in patients with changed donor compared with patients with the original donor. Relapses within 6 months post-HSCT1 and with persistent disease before HSCT2 were risk factors for OS, DFS, and CIR. Disease status before HSCT2 and early relapse (within 6 months post-HSCT1) was an independent risk factor for OS, DFS, and CIR post-HSCT2. Conclusion: Our findings indicate that changing donors did not affect the clinical outcome of HSCT2.
Humans
;
Male
;
Female
;
Adult
;
Child, Preschool
;
Child
;
Adolescent
;
Young Adult
;
Middle Aged
;
Retrospective Studies
;
Hematologic Neoplasms/therapy*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Leukemia, Myeloid, Acute/therapy*
;
Recurrence
;
Graft vs Host Disease/etiology*
;
Chronic Disease
6.Clinical analysis of the usefulness of letermovir for prevention of cytomegalovirus infection after haploidentical hematopoietic stem cell transplantation.
Rui MA ; Yun HE ; Hui Fang WANG ; Lu BAI ; Wei HAN ; Yi Fei CHENG ; Kai Yan LIU ; Lan Ping XU ; Xiao Hui ZHANG ; Yu WANG ; Yuan Yuan ZHANG ; Feng Rong WANG ; Xiao Dong MO ; Chen Hua YAN ; Xiao Jun HUANG ; Yu Qian SUN
Chinese Journal of Internal Medicine 2023;62(7):826-832
Objective: To analyze the efficacy and safety of letermovir in primary prophylaxis of cytomegalovirus (CMV) reactivation in patients receiving haploidentical hematopoietic stem cell transplantation. Methods: This retrospective, cohort study was conducted using data of patients who underwent haploidentical transplantation at Peking University Institute of Hematology and received letermovir for primary prophylaxis between May 1, 2022 and August 30, 2022. The inclusion criteria of the letermovir group were as follows: letermovir initiation within 30 days after transplantation and continuation for≥90 days after transplantation. Patients who underwent haploidentical transplantation within the same time period but did not receive letermovir prophylaxis were selected in a 1∶4 ratio as controls. The main outcomes were the incidence of CMV infection and CMV disease after transplantation as well as the possible effects of letermovir on acute graft versus host disease (aGVHD), non-relapse mortality (NRM), and bone marrow suppression. Categorical variables were analyzed by chi-square test, and continuous variables were analyzed by Mann-Whitney U test. The Kaplan-Meier method was used for evaluating incidence differences. Results: Seventeen patients were included in the letermovir prophylaxis group. The median patient age in the letermovir group was significantly greater than that in the control group (43 yr vs. 15 yr; Z=-4.28, P<0.001). The two groups showed no significant difference in sex distribution and primary diseases, etc. (all P>0.05). The proportion of CMV-seronegative donors was significantly higher in the letermovir prophylaxis group in comparison with the control group (8/17 vs. 0/68, χ2=35.32, P<0.001). Three out of the 17 patients in the letermovir group experienced CMV reactivation, which was significantly lower than the incidence of CMV reactivation in the control group (3/17 vs. 40/68, χ2=9.23, P=0.002), and no CMV disease development observed in the letermovir group. Letermovir showed no significant effects on platelet engraftment (P=0.105), aGVHD (P=0.348), and 100-day NRM (P=0.474). Conclusions: Preliminary data suggest that letermovir may effectively reduce the incidence of CMV infection after haploidentical transplantation without influencing aGVHD, NRM, and bone marrow suppression. Prospective randomized controlled studies are required to further verify these findings.
Humans
;
Cytomegalovirus
;
Retrospective Studies
;
Cohort Studies
;
Prospective Studies
;
Cytomegalovirus Infections/prevention & control*
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Graft vs Host Disease/prevention & control*
;
Recurrence
;
Antiviral Agents/therapeutic use*
7.Impact of SARS-CoV-2 infection on graft composition and early transplant outcomes following allogeneic hematopoietic stem cell transplantation.
Fan LIN ; Hui SUN ; Yao CHEN ; Yuan Yuan ZHANG ; Jing LIU ; Yun HE ; Feng Mei ZHENG ; Zheng Li XU ; Feng Rong WANG ; Jun KONG ; Zhi Dong WANG ; Yuan Yuan WAN ; Xiao Dong MO ; Yu WANG ; Yi Fei CHENG ; Xiao Hui ZHANG ; Xiao Jun HUANG ; Lan Ping XU
Chinese Journal of Hematology 2023;44(11):890-899
Objective: To assess the feasibility of using donors with novel coronavirus disease 2019 (COVID-19) for allogeneic hematopoietic stem cell transplantation (allo-HSCT) when there are no other available donors and allo-HSCT cannot be delayed or discontinued. Methods: Seventy-one patients with malignant hematological diseases undergoing allo-HSCT between December 8, 2022, and January 10, 2023, were included. Of these, 16 received grafts from donors with mild COVID-19 (D-COVID(+) group) and 55 received grafts from donors without COVID-19 (D-COVID(-) group). The graft compositions were compared between the two groups. Engraftment, acute graft-versus-host disease (aGVHD), overall survival (OS), and relapse were also evaluated. Results: There were no serious side effects or adverse events in the D-COVID(+) group. The mononuclear cell dose and CD34(+) cell dose were comparable between the two groups, and no additional apheresis was required. There were no significant differences in the lymphocyte, monocyte, and T-cell subset doses between the two groups. The median natural killer cell dose in the D-COVID(+) group was significantly higher than that in the D-COVID(-) group (0.69×10(8)/kg vs. 0.53×10(8)/kg, P=0.031). The median follow-up time was 72 (33-104) days. All patients achieved primary engraftment. The 60-day platelet engraftment rates in the D-COVID(+) and D-COVID(-) groups were 100% and (96.4±0.2) %, respectively (P=0.568). There were no significant differences in neutrophil (P=0.309) and platelet (P=0.544) engraftment times. The cumulative incidence of grade 2-4 aGVHD was (37.5±1.6) % vs. (16.4±0.3) % (P=0.062), and of grade 3-4 aGVHD was 25.0% ±1.3% vs. 9.1% ±0.2% (P=0.095) in the D-COVID(+) and D-COVID(-) groups, respectively. The probabilities of 60-day OS were 100% and 98.1% ±1.8% (P=0.522) in the D-COVID(+) and D-COVID(-) groups, respectively. There was no relapse of primary disease during the study period. Conclusion: When allo-HSCT cannot be delayed or discontinued and no other donor is available, a donor with mild COVID-19 should be considered if tolerable. Larger sample sizes and longer follow-up periods are required to validate these results.
Humans
;
COVID-19
;
SARS-CoV-2
;
Hematopoietic Stem Cell Transplantation
;
Tissue Donors
;
Graft vs Host Disease
8.Risk factors of hidden blood loss in percutaneous vertebral augmentation.
Zhi-Hua WU ; Ling MO ; Huan-Tong CHENG ; De LIANG ; Jian-Chao CUI ; Jing-Jing TANG ; Hui REN ; Zhen-Song YAO ; Xiao-Bing JIANG
China Journal of Orthopaedics and Traumatology 2022;35(8):732-735
OBJECTIVE:
To explore the risk factors of hidden blood loss in osteoporosis vertebral compression fractures during percutaneous vertebral augmentation.
METHODS:
From October 2018 to December 2019, 360 patients with osteoporosis vertebral compression fractures who received percutaneous vertebral augmentation were enrolled in this study. The factors analyzed included gender, age, surgical methods, disease course, height, weight, the operative segment, bone mineral density, amount of bone cement, operative time, percentage of height loss, percentage of vertebral height restoration, cement leakage, blood clotting function, preoperative and postoperative hemoglobin and hematocrit and other internal diseases. Total blood loss was calculated by Gross's formula, influential factors of the hidden blood loss were further analyzed by t-test, multivariate linear regression and one-way ANOVA analysis.
RESULTS:
Surgical methods, the operative segment, disease course, cement leakage, preoperative hemoglobin, cement leakage via the basivertebral and segmental vein were significantly correlated with hidden blood loss(P<0.05).
CONCLUSION
Patients with percutaneous kyphoplasty, two-level and multi-level surgery, the course of the disease beyond 6 weeks, cement leakage via the basivertebral and segmental vein, and lower preoperative hemoglobin had more perioperative hidden blood loss.
Bone Cements/adverse effects*
;
Fractures, Compression/etiology*
;
Humans
;
Kyphoplasty/methods*
;
Osteoporosis/complications*
;
Osteoporotic Fractures/surgery*
;
Retrospective Studies
;
Risk Factors
;
Spinal Fractures/etiology*
;
Treatment Outcome
;
Vertebroplasty/adverse effects*
9.A retrospective comparative study of haplotype hematopoietic stem cell transplantation and human leukocyte antigen-matched sibling donor hematopoietic stem cell transplantation in the treatment of acute B-lymphocyte leukemia.
Zhi Dong WANG ; Yu Qian SUN ; Chen Hua YAN ; Feng Rong WANG ; Xiao Dong MO ; Meng LYU ; Xiao Su ZHAO ; Wei HAN ; Huan CHEN ; Yu Hong CHEN ; Yu WANG ; Lan Ping XU ; Ya Zhe WANG ; Yan Rong LIU ; Yi Fei CHENG ; Xiao Hui ZHANG ; Kai Yan LIU ; Xiao Jun HUANG ; Ying Jun CHANG
Chinese Journal of Hematology 2022;43(3):221-228
Objective: To investigate whether haplotype hematopoietic stem cell transplantation (haplo-HSCT) is effective in the treatment of pre transplant minimal residual disease (Pre-MRD) positive acute B lymphoblastic leukemia (B-ALL) compared with HLA- matched sibling donor transplantation (MSDT) . Methods: A total of 998 patients with B-ALL in complete remission pre-HSCT who either received haplo-HSCT (n=788) or underwent MSDT (n=210) were retrospectively analyzed. The pre-transplantation leukemia burden was evaluated according to Pre-MRD determinedusing multiparameter flow cytometry (MFC) . Results: Of these patients, 997 (99.9% ) achieved sustained, full donor chimerism. The 100-day cumulative incidences of neutrophil engraftment, platelet engraftment, and grades Ⅱ-Ⅳ acute graft-versus-host disease (GVHD) were 99.9% (997/998) , 95.3% (951/998) , and 26.6% (95% CI 23.8% -29.4% ) , respectively. The 3-year cumulative incidence of total chronic GVHD was 49.1% (95% CI 45.7% -52.4% ) . The 3-year cumulative incidence of relapse (CIR) and non-relapse mortality (NRM) of the 998 cases were 17.3% (95% CI 15.0% -19.7% ) and 13.8% (95% CI 11.6% -16.0% ) , respectively. The 3-year probabilities of leukemia-free survival (LFS) and overall survival (OS) were 69.1% (95% CI 66.1% -72.1% ) and 73.0% (95% CI 70.2% -75.8% ) , respectively. In the total patient group, cases with positive Pre-MRD (n=282) experienced significantly higher CIR than that of subjects with negative Pre-MRD [n=716, 31.6% (95% CI 25.8% -37.5% ) vs 14.3% (95% CI 11.4% -17.2% ) , P<0.001]. For patients in the positive Pre-MRD subgroup, cases treated with haplo-HSCT (n=219) had a lower 3-year CIR than that of cases who underwent MSDT [n=63, 27.2% (95% CI 21.0% -33.4% ) vs 47.0% (95% CI 33.8% -60.2% ) , P=0.002]. The total 998 cases were classified as five subgroups, including cases with negative Pre-MRD group (n=716) , cases with Pre-MRD<0.01% group (n=46) , cases with Pre-MRD 0.01% -<0.1% group (n=117) , cases with Pre-MRD 0.1% -<1% group (n=87) , and cases with Pre-MRD≥1% group (n=32) . For subjects in the Pre-MRD<0.01% group, haplo-HSCT (n=40) had a lower CIR than that of MSDT [n=6, 10.0% (95% CI 0.4% -19.6% ) vs 32.3% (95% CI 0% -69.9% ) , P=0.017]. For patients in the Pre-MRD 0.01% -<0.1% group, haplo-HSCT (n=81) also had a lower 3-year CIR than that of MSDT [n=36, 20.4% (95% CI 10.4% -30.4% ) vs 47.0% (95% CI 29.2% -64.8% ) , P=0.004]. In the other three subgroups, the 3-year CIR was comparable between patients who underwent haplo-HSCT and those received MSDT. A subgroup analysis of patients with Pre-MRD<0.1% (n=163) was performed, the results showed that cases received haplo-HSCT (n=121) experienced lower 3-year CIR [16.0% (95% CI 9.4% -22.7% ) vs 40.5% (95% CI 25.2% -55.8% ) , P<0.001], better 3-year LFS [78.2% (95% CI 70.6% -85.8% ) vs 47.6% (95% CI 32.2% -63.0% ) , P<0.001] and OS [80.5% (95% CI 73.1% -87.9% ) vs 54.6% (95% CI 39.2% -70.0% ) , P<0.001] than those of MSDT (n=42) , but comparable in 3-year NRM [5.8% (95% CI 1.6% -10.0% ) vs 11.9% (95% CI 2.0% -21.8% ) , P=0.188]. Multivariate analysis showed that haplo-HSCT was associated with lower CIR (HR=0.248, 95% CI 0.131-0.472, P<0.001) , and superior LFS (HR=0.275, 95% CI 0.157-0.483, P<0.001) and OS (HR=0.286, 95% CI 0.159-0.513, P<0.001) . Conclusion: Haplo HSCT has a survival advantage over MSDT in the treatment of B-ALL patients with pre MRD<0.1% .
B-Lymphocytes
;
Graft vs Host Disease
;
HLA Antigens/genetics*
;
Haplotypes
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Humans
;
Leukemia, B-Cell/complications*
;
Leukemia, Lymphocytic, Chronic, B-Cell/complications*
;
Neoplasm, Residual
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy*
;
Recurrence
;
Retrospective Studies
;
Siblings
10.Course of disease and related epidemiological parameters of COVID-19: a prospective study based on contact tracing cohort.
Yan ZHOU ; Wen Jia LIANG ; Zi Hui CHEN ; Tao LIU ; Tie SONG ; Shao Wei CHEN ; Ping WANG ; Jia Ling LI ; Yun Hua LAN ; Ming Ji CHENG ; Jin Xu HUANG ; Ji Wei NIU ; Jian Peng XIAO ; Jian Xiong HU ; Li Feng LIN ; Qiong HUANG ; Ai Ping DENG ; Xiao Hua TAN ; Min KANG ; Gui Min CHEN ; Mo Ran DONG ; Hao Jie ZHONG ; Wen Jun MA
Chinese Journal of Preventive Medicine 2022;56(4):474-478
Objective: To analyze the course of disease and epidemiological parameters of COVID-19 and provide evidence for making prevention and control strategies. Methods: To display the distribution of course of disease of the infectors who had close contacts with COVID-19 cases from January 1 to March 15, 2020 in Guangdong Provincial, the models of Lognormal, Weibull and gamma distribution were applied. A descriptive analysis was conducted on the basic characteristics and epidemiological parameters of course of disease. Results: In total, 515 of 11 580 close contacts were infected, with an attack rate about 4.4%, including 449 confirmed cases and 66 asymptomatic cases. Lognormal distribution was fitting best for latent period, incubation period, pre-symptomatic infection period of confirmed cases and infection period of asymptomatic cases; Gamma distribution was fitting best for infectious period and clinical symptom period of confirmed cases; Weibull distribution was fitting best for latent period of asymptomatic cases. The latent period, incubation period, pre-symptomatic infection period, infectious period and clinical symptoms period of confirmed cases were 4.50 (95%CI:3.86-5.13) days, 5.12 (95%CI:4.63-5.62) days, 0.87 (95%CI:0.67-1.07) days, 11.89 (95%CI:9.81-13.98) days and 22.00 (95%CI:21.24-22.77) days, respectively. The latent period and infectious period of asymptomatic cases were 8.88 (95%CI:6.89-10.86) days and 6.18 (95%CI:1.89-10.47) days, respectively. Conclusion: The estimated course of COVID-19 and related epidemiological parameters are similar to the existing data.
COVID-19
;
Cohort Studies
;
Contact Tracing
;
Humans
;
Incidence
;
Prospective Studies

Result Analysis
Print
Save
E-mail