1.Dispersion effect of bone cement after vertebroplasty using individualized unilateral external pedicle approach and bilateral pedicle approach
Lichuang ZHANG ; Wen YANG ; Guangjiang DING ; Peikun LI ; Zhongyu XIAO ; Ying CHEN ; Xue FANG ; Teng ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(4):800-808
BACKGROUND:According to existing clinical studies,vertebroplasty treatment with both the external pedicle approach and the pedicle approach can improve the pain and quality of life of patients with spinal compression fractures.Compared with the pedicle approach,the external pedicle approach has a freer puncture angle,and good bone cement dispersion effect can be obtained by adjusting the puncture angle. OBJECTIVE:To compare the impact of vertebroplasty through individualized unilateral external pedicle approach and bilateral pedicle approach on the treatment of spinal compression fractures by quantifying the dispersion effect of bone cement. METHODS:A total of 80 patients with thoracolumbar compression fracture were divided into two groups by random number table method.The bilateral pedicle group(n=40)underwent vertebroplasty through a bilateral pedicle approach,while the unilateral external pedicle group(n=40)underwent individualized vertebroplasty through a unilateral external pedicle approach.Anteroposterior and lateral X-rays of the affected vertebrae from two groups of patients were photographed to assess effect and type of bone cement dispersion within 3 days after surgery.Visual analog scale score,tenderness threshold around fracture,and Oswestry dysfunction index were assessed before,1,7 days,and 1 month after surgery. RESULTS AND CONCLUSION:(1)Dispersion effect of bone cement in unilateral external pedicle group was better than that in bilateral pedicle group(P<0.001),and the amount of bone cement perfusion was higher than that in bilateral pedicle group(P<0.001).In the bilateral pedicle group,the bone cement dispersion types were mainly concentrated in type Ⅰ and type Ⅲ,while in the unilateral external pedicle group,the bone cement dispersion types were mainly concentrated in type I and type Ⅱ,and there was a significant difference in bone cement dispersion types between the two groups(P<0.001).(2)Postoperative visual analog scale scores and Oswestry disability index of both groups were lower than those before surgery(P<0.001),and postoperative tenderness threshold around fracture showed a trend of decreasing first and then increasing.At the same time point after treatment,there were no significant differences in visual analog scale score,Oswestry disability index,and tenderness threshold around fracture between the two groups(P>0.05).(3)The results indicate that individualized vertebroplasty via unilateral external pedicle approach can achieve better bone cement dispersion,and the treatment effect is consistent with the vertebroplasty via classical bilateral pedicle approach.
2.Biomimetic nanoparticle delivery systems b ased on red blood cell membranes for disease treatment
Chen-xia GAO ; Yan-yu XIAO ; Yu-xue-yuan CHEN ; Xiao-liang REN ; Mei-ling CHEN
Acta Pharmaceutica Sinica 2025;60(2):348-358
Nanoparticle delivery systems have good application prospects in the field of precision therapy, but the preparation process of nanomaterial has problems such as short
3.Effects of Exercise Training on The Behaviors and HPA Axis in Autism Spectrum Disorder Rats Through The Gut Microbiota
Xue-Mei CHEN ; Yin-Hua LI ; Jiu-Gen ZHONG ; Zhao-Ming YANG ; Xiao-Hui HOU
Progress in Biochemistry and Biophysics 2025;52(6):1511-1528
ObjectiveThe study explores the influence of voluntary wheel running on the behavioral abnormalities and the activation state of the hypothalamic-pituitary-adrenal (HPA) axis in autism spectrum disorder (ASD) rats through gut microbiota. MethodsSD female rats were selected and administered either400 mg/kg of valproic acid (VPA) solution or an equivalent volume of saline via intraperitoneal injection on day 12.5 of pregnancy. The resulting offspring were divided into 2 groups: the ASD model group (PASD, n=35) and the normal control group (PCON, n=16). Behavioral assessments, including the three-chamber social test, open field test, and Morris water maze, were conducted on postnatal day 23. After behavioral testing, 8 rats from each group (PCON, PASD) were randomly selected for serum analysis using enzyme-linked immunosorbent assay (ELISA) to measure corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) concentration, to evaluate the functional state of the HPA axis in rats. On postnatal day 28, the remaining 8 rats in the PCON group were designated as the control group (CON, n=8), and the remaining 27 rats in the PASD group were randomly divided into 4 groups: ASD non-intervention group (ASD, n=6), ASD exercise group (ASDE, n=8), ASD fecal microbiota transplantation group (FMT, n=8), and ASD sham fecal microbiota transplantation group (sFMT, n=5). The rats in the ASD group and the CON group were kept under standard conditions, while the rats in the ASDE group performed 6 weeks of voluntary wheel running intervention starting on postnatal day 28. The rats in the FMT group were gavaged daily from postnatal day 42 with 1 ml/100 g fresh fecal suspension from ASDE rats which had undergone exercise for 2 weeks, 5 d per week, continuing for 4 weeks. The sFMT group received an equivalent volume of saline. After the interventions were completed, behavioral assessments and HPA axis markers were measured for all groups. ResultsBefore the intervention, the ASD model group exhibited significantly reduced social ability, social novelty preference, spontaneous activity, and exploratory interest, as well as impaired spatial learning, memory, and navigation abilities compared to the normal control group (P<0.05). Serum concentration of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and corticosterone (CORT) in the PASD group were significantly higher than those in the PCON group (P<0.05). Following 6 weeks of voluntary wheel running, the ASDE group showed significant improvements in social ability, social novelty preference, spontaneous activity, exploratory interest, spatial learning, memory, and navigation skills compared to the ASD group (P<0.05), with a significant decrease in serum CORT concentration (P<0.05), and a downward trend in CRH and ACTH concentration. After 4 weeks of fecal microbiota transplantation in the exercise group, the FMT group showed marked improvements in social ability, social novelty preference, spontaneous activity, exploratory interest, as well as spatial learning, memory, and navigation abilities compared to both the ASD and sFMT groups (P<0.05). In addition, serum ACTH and CORT concentration were significantly reduced (P<0.05), and CRH concentration also showed a decreasing trend. ConclusionExercise may improve ASD-related behaviors by suppressing the activation of the HPA axis, with the gut microbiota likely playing a crucial role in this process.
4.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
5.Exploration of pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in treatment of gouty arthritis based on UPLC-Q-Exactive Orbitrap-MS technology and network pharmacology.
Yan XIAO ; Ting ZHANG ; Ying-Jie ZHANG ; Bin HUANG ; Peng CHEN ; Xiao-Hua CHEN ; Ming-Qing HUANG ; Xue-Ting CHEN ; You-Xin SU ; Jie-Mei GUO
China Journal of Chinese Materia Medica 2025;50(2):444-488
Based on ultra-high performance liquid chromatography-quadrupole-Exactive Orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) technology and network pharmacology, this study explored the pharmacodynamic substances and potential mechanisms of Huazhuo Sanjie Chubi Decoction in the treatment of gouty arthritis(GA). UPLC-Q-Exactive Orbitrap-MS technology was used to identify the components in Huazhuo Sanjie Chubi Decoction, and the qualitative analysis of its active ingredients was carried out, with a total of 184 active ingredients identified. A total of 897 active ingredient targets were screened through the PharmMapper database, and 491 GA-related disease targets were obtained from the OMIM, GeneCards, CTD databases. After Venn analysis, 60 intersecting targets were obtained. The component target-GA target network was constructed through the Cytoscape platform, and the STRING database was used to construct a protein-protein interaction network, with 16 core targets screened. The core targets were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses, and the component-target-pathway network was constructed. It was found that the main active ingredients of the formula for the treatment of GA were phenols, flavonoids, alkaloids, and terpenoids, and the key targets were SRC, MMP3, MMP9, REN, ALB, IGF1R, PPARG, MAPK1, HPRT1, and CASP1. Through GO analysis, it was found that the treatment of GA mainly involved biological processes such as lipid response, bacterial response, and biostimulus response. KEGG analysis showed that the pathways related to the treatment of GA included lipids and atherosclerosis, neutrophil extracellular traps(NETs), IL-17, and so on. In summary, phenols, flavonoids, alkaloids, and terpenoids may be the core pharmacodynamic substances of Huazhuo Sanjie Chubi Decoction in the treatment of GA, and the pharmacodynamic mechanism may be related to SRC, MMP3, MMP9, and other targets, as well as lipids and atherosclerosis, NETs, IL-17, and other pathways.
Drugs, Chinese Herbal/therapeutic use*
;
Network Pharmacology
;
Arthritis, Gouty/metabolism*
;
Chromatography, High Pressure Liquid/methods*
;
Humans
;
Mass Spectrometry/methods*
;
Protein Interaction Maps/drug effects*
6.Buzhong Yiqi Decoction alleviates immune injury of autoimmune thyroiditis in NOD.H-2~(h4)mice via c GAS-STING signaling pathway.
Yi-Ran CHEN ; Lan-Ting WANG ; Qing-Yang LIU ; Zhao-Han ZHAI ; Shou-Xin JU ; Xue-Ying CHEN ; Zi-Yu LIU ; Xiao YANG ; Tian-Shu GAO ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2025;50(7):1872-1880
This study aims to explore the effects of Buzhong Yiqi Decoction(BYD) on the cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS)-stimulator of interferon genes(STING) signaling pathway in the mouse model of autoimmune thyroiditis(AIT) and the mechanism of BYD in alleviating the immune injury. Forty-eight NOD.H-2~(h4) mice were assigned into normal, model, low-, medium-, and high-dose BYD, and selenium yeast tablets groups(n=8). Mice of 8 weeks old were treated with 0.05% sodium iodide solution for 8 weeks for the modeling of AIT and then administrated with corresponding drugs by gavage for 8 weeks before sampling. High performance liquid chromatography was employed to measure the astragaloside Ⅳ content in BYD. Hematoxylin-eosin staining was employed to observe the pathological changes in the mouse thyroid tissue. Enzyme-linked immunosorbent assay was employed to measure the serum levels of thyroid peroxidase antibody(TPO-Ab), thyroglobulin antibody(TgAb), and interferon-γ(IFN-γ). Flow cytometry was employed to detect the distribution of T cell subsets in the spleen. The immunohistochemical method was used to detect the expression of cGAS, STING, TANK-binding kinase 1(TBK1), and interferon regulatory factor 3(IRF3). Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of markers related to the cGAS-STING signaling pathway in the thyroid tissue. The results showed that the content of astragaloside Ⅳ in BYD was(7.06±0.08) mg·mL~(-1). Compared with the normal group, the model group showed disrupted structures of thyroid follicular epithelial cells, massive infiltration of lymphocytes, and elevated levels of TgAb and TPO-Ab. Compared with the model group, the four treatment groups showed intact epithelial cells, reduced lymphocyte infiltration, and lowered levels of TgAb and TPO-Ab. Compared with the normal group, the model group showed increases in the proportions of Th1 and Th17 cells, a decrease in the proportion of Th2 cells, and an increase in the IFN-γ level. Compared with the model group, the four treatment groups presented decreased proportions of Th1 and Th17 cells and lowered levels of IFN-γ, and the medium-dose BYD group showed an increase in the proportion of Th2 cells. Compared with the normal group, the modeling up-regulated the mRNA levels of cGAS, STING, TBK1, and IRF3 and the protein levels of cGAS, p-STING, p-TBK1, and p-IRF3. Compared with the model group, the four treatment groups showed reduced levels of cGAS, STING, TBK1, and IRF3-positive products, down-regulated mRNA levels of cGAS, STING, and TBK1, and down-regulated protein levels of cGAS and p-STING. The high-dose BYD group showed down-regulations in the mRNA level of IRF3 and the protein levels of p-TBK1 and p-IRF3. The above results indicate that BYD can repair the imbalance of T cell subsets, alleviate immune injury, and reduce thyroid lymphocyte infiltration in AIT mice by inhibiting the cGAS-STING signaling pathway.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
Thyroiditis, Autoimmune/metabolism*
;
Mice
;
Membrane Proteins/metabolism*
;
Mice, Inbred NOD
;
Humans
;
Female
;
Nucleotidyltransferases/metabolism*
;
Male
;
Disease Models, Animal
7.Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia.
Kun GAO ; Chang-Xin LIU ; Jia-Qi CHEN ; Jing-Jing SUN ; Xiao-Juan LI ; Zhi-Qiang HUANG ; Ye ZHANG ; Pei-Feng XUE ; Su-Yi-le CHEN ; Xin DONG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(8):2080-2089
Syringa pinnatifolia, belonging to the family Oleaceae, is a species endemic to China. It is predominantly distributed in the Helan Mountains region of Inner Mongolia and Ningxia of China. The peeled roots, stems, and thick branches have been used as a distinctive Mongolian medicinal material known as "Shan-chen-xiang", which has effects such as suppressing "khii", clearing heat, and relieving pain and is employed for the treatment of cardiovascular and pulmonary diseases and joint pain. Over the past five years, significant increase was achieved in research on chemical constituents and pharmacological effects. There were a total of 130 new constituents reported, covering sesquiterpenoids, lignans, and alkaloids. Its effects of anti-myocardial ischemia, anti-cerebral ischemia/reperfusion, sedation, and analgesia were revealed, and the mechanisms of agarwood formation were also investigated. To better understand its medical value and potential of clinical application, this review updates the research progress in recent five years focusing on the chemical constituents and pharmacological effects of S. pinnatifolia, providing reference for subsequent research on active ingredient and support for its innovative application in modern medicine system.
Medicine, Mongolian Traditional
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Syringa/chemistry*
8.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
9.Comparison on chemical components of Angelicae Sinensis Radix before and after wine processing by HS-GC-IMS, HS-SPME-GC-MS, and UPLC-Q-Orbitrap-MS combined with chemometrics.
Xue-Hao SUN ; Jia-Xuan CHEN ; Jia-Xin YIN ; Xiao HAN ; Zhi-Ying DOU ; Zheng LI ; Li-Ping KANG ; He-Shui YU
China Journal of Chinese Materia Medica 2025;50(14):3909-3917
The study investigated the intrinsic changes in material basis of Angelicae Sinensis Radix during wine processing by headspace-gas chromatography-ion mobility spectrometry(HS-GC-IMS), headspace-solid phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS), and ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry(UPLC-Q-Orbitrap-MS) combined with chemometrics. HS-GC-IMS fingerprints of Angelicae Sinensis Radix before and after wine processing were established to analyze the variation trends of volatile components and characterize volatile small-molecule substances before and after processing. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed for differentiation and difference analysis. A total of 89 volatile components in Angelicae Sinensis Radix were identified by HS-GC-IMS, including 14 unsaturated hydrocarbons, 16 aldehydes, 13 ketones, 9 alcohols, 16 esters, 6 organic acids, and 15 other compounds. HS-SPME-GC-MS detected 118 volatile components, comprising 42 unsaturated hydrocarbons, 11 aromatic compounds, 30 alcohols, 8 alkanes, 6 organic acids, 4 ketones, 7 aldehydes, 5 esters, and 5 other volatile compounds. UPLC-Q-Orbitrap-MS identified 76 non-volatile compounds. PCA revealed distinct clusters of raw and wine-processed Angelicae Sinensis Radix samples across the three detection methods. Both PCA and OPLS-DA effectively discriminated between the two groups, and 145 compounds(VIP>1) were identified as critical markers for evaluating processing quality, including 4-methyl-3-penten-2-one, ethyl 2-methylpentanoate, and 2,4-dimethyl-1,3-dioxolane detected by HS-GC-IMS, angelic acid, β-pinene, and germacrene B detected by HS-SPME-GC-MS, and L-tryptophan, licoricone, and angenomalin detected by UPLC-Q-Orbitrap-MS. In conclusion, the integration of the three detection methods with chemometrics elucidates the differences in the chemical material basis between raw and wine-processed Angelicae Sinensis Radix, providing a scientific foundation for understanding the processing mechanisms and clinical applications of wine-processed Angelicae Sinensis Radix.
Wine/analysis*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Angelica sinensis/chemistry*
;
Solid Phase Microextraction/methods*
;
Drugs, Chinese Herbal/isolation & purification*
;
Chemometrics
;
Volatile Organic Compounds/chemistry*
;
Principal Component Analysis
;
Ion Mobility Spectrometry/methods*
10.Mechanism of isorhamnetin in alleviating acute lung injury by regulating pyroptosis medicated by NLRP3/ASC/caspase-1 axis.
Ya-Lei SUN ; Yu GUO ; Xin-Yu WANG ; Ya-Su ZHANG ; Xue CHENG ; Ke ZHU ; Li-Dian CHEN ; Xiao-Dong FENG
China Journal of Chinese Materia Medica 2025;50(15):4120-4128
This study aims to explore the intervention effects of isorhamnetin(Isor) on acute lung injury(ALI) and its regulatory effects on pyroptosis mediated by the NOD-like receptor family pyrin domain containing 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteine aspartate-specific protease-1(caspase-1) axis. In the in vivo experiments, 60 BALB/c mice were divided into five groups. Except for the control group, the other groups were administered Isor by gavage 1 hour before intratracheal instillation of LPS to induce ALI, and tissues were collected after 12 hours. In the in vitro experiments, RAW264.7 cells were divided into five groups. Except for the control group, the other groups were pretreated with Isor for 2 hours before LPS stimulation and subsequent assessments. Hematoxylin-eosin(HE) staining was used to observe pathological changes in lung tissue, while lung swelling, protein levels in bronchoalveolar lavage fluid(BALF), and myeloperoxidase(MPO) levels in lung tissue were measured. Cell proliferation toxicity and viability were assessed using the cell counting kit-8(CCK-8) method. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin-1β(IL-1β), IL-6, IL-18, and tumor necrosis factor-α(TNF-α). Protein levels of NLRP3, ASC, cleaved caspase-1, and the N-terminal fragment of gasdermin D(GSDMD-N) were evaluated using immunohistochemistry, immunofluorescence, and Western blot. The results showed that in the in vivo experiments, Isor significantly improved pathological damage in lung tissue, reduced lung swelling, protein levels in BALF, MPO levels in lung tissue, and levels of inflammatory cytokines such as IL-1β, IL-6, IL-18, and TNF-α, and inhibited the high expression of the NLRP3/ASC/caspase-1 axis and the pyroptosis core gene GSDMD-N. In the in vitro experiments, the safe dose of Isor was determined through cell proliferation toxicity assays. Isor reduced cell death and inhibited the expression levels of the NLRP3/ASC/caspase-1 axis, GSDMD-N, and inflammatory cytokines. In conclusion, Isor may alleviate ALI by modulating pyroptosis mediated by the NLRP3/ASC/caspase-1 axis.
Animals
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Acute Lung Injury/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Quercetin/pharmacology*
;
Caspase 1/genetics*
;
CARD Signaling Adaptor Proteins/genetics*
;
Male
;
RAW 264.7 Cells
;
Humans
;
Lung/metabolism*

Result Analysis
Print
Save
E-mail