1.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
2.Selection and validation of reference genes for quantitative real-time PCR analysis in Tujia medicine Xuetong.
Qian XIAO ; Chen-Si TAN ; Jiang ZENG ; Yuan-Shu XU ; Tian-Hao FU ; Lu-Yun NING ; Wei WANG
China Journal of Chinese Materia Medica 2025;50(3):682-692
Tujia ethnic group medicine Xuetong is derived from Kadsura heteroclita, the stem of which has the medicinal value for anti-rheumatoid arthritis, liver protection, anti-tumor, anti-oxidation effects, and has been widely used in Hunan and Guangdong in China. The selection of reliable and stable reference genes is the basis for subsequent molecular research on K. heteroclita. In this study, GAPDH, TUA, Actin, UBQ, EF-1α, 18S-rRNA, CYP, UBC, TUB, H2A, and RPL were selected as candidate reference genes in Kadsura heteroclita. The gene expression levels of the 11 candidate reference genes of K. heteroclita in its 6 different parts(stem-inside of the cambium, stem-outside of the cambium, fruit, flower, root, and leaf) and under different intervention conditions [drought stress, salt stress, and methyl jasmonate(MeJA) treatment] were detected by quantitative real-time polymerase chain reaction(qRT-PCR). The expression stability of the 11 candidate reference genes was comprehensively analyzed and evaluated by geNorm, NormFinder, ΔCT algorithm, and RefFinder software. The results showed that the expression of UBC and RPL was relatively stable in 6 different parts, and UBC and GAPDH genes were relatively stable under different intervention conditions. To verify the reliability of reference genes for K. heteroclita, this study further examined the relative expression levels of KhFPS, KhIDI, KhCAS, KhSQE, KhSQS, KhSQS-2, KhHMGS, KhHMGR, KhMVD, KhMVK, KhDXR, KhDXS, KhPMVK, and KhGGPS in different parts and under different intervention conditions, which might relate to the synthesis of the main component(Xuetongsu) of K. heteroclita. The results showed that with UBC and RPL or UBC and GAPDH as the reference genes, the expression trends of these 14 genes were basically consistent in different parts or under different intervention conditions for K. heteroclita. In conclusion, UBC can be used as a reference gene of K. heteroclita for its different parts and different intervention conditions, which lays a foundation for further research on the biosynthetic pathway of main components in K. heteroclita.
Real-Time Polymerase Chain Reaction/methods*
;
Reference Standards
;
Gene Expression Regulation, Plant
;
Gene Expression Profiling
;
Plant Proteins/metabolism*
;
Drugs, Chinese Herbal
3.Mechanism of Euphorbiae Ebracteolatae Radix processed by milk in reducing intestinal toxicity.
Chang-Li SHEN ; Hao WU ; Hong-Li YU ; Hong-Mei WEN ; Xiao-Bing CUI ; Hui-Min BIAN ; Tong-la-Ga LI ; Min ZENG ; Yan-Qing XU ; Yu-Xin GU
China Journal of Chinese Materia Medica 2025;50(12):3204-3213
This study aimed to investigate the correlation between changes in intestinal toxicity and compositional alterations of Euphorbiae Ebracteolatae Radix(commonly known as Langdu) before and after milk processing, and to explore the detoxification mechanism of milk processing. Mice were intragastrically administered the 95% ethanol extract of raw Euphorbiae Ebracteolatae Radix, milk-decocted(milk-processed), and water-decocted(water-processed) Euphorbiae Ebracteolatae Radix. Fecal morphology, fecal water content, and the release levels of inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in different intestinal segments were used as indicators to evaluate the effects of different processing methods on the cathartic effect and intestinal inflammatory toxicity of Euphorbiae Ebracteolatae Radix. LC-MS/MS was employed to analyze the small-molecule components in the raw product, the 95% ethanol extract of the milk-processed product, and the milky waste(precipitate) formed during milk processing, to assess the impact of milk processing on the chemical composition of Euphorbiae Ebracteolatae Radix. The results showed that compared with the blank group, both the raw and water-processed Euphorbiae Ebracteolatae Radix significantly increased the fecal morphology score, fecal water content, and the release levels of TNF-α and IL-1β in various intestinal segments(P<0.05). Compared with the raw group, all indicators in the milk-processed group significantly decreased(P<0.05), while no significant differences were observed in the water-processed group, indicating that milk, as an adjuvant in processing, plays a key role in reducing the intestinal toxicity of Euphorbiae Ebracteolatae Radix. Mass spectrometry results revealed that 29 components were identified in the raw product, including 28 terpenoids and 1 acetophenone. The content of these components decreased to varying extents after milk processing. A total of 28 components derived from Euphorbiae Ebracteolatae Radix were identified in the milky precipitate, of which 27 were terpenoids, suggesting that milk processing promotes the transfer of toxic components from Euphorbiae Ebracteolatae Radix into milk. To further investigate the effect of milk adjuvant processing on the toxic terpenoid components of Euphorbiae Ebracteolatae Radix, transmission electron microscopy(TEM) was used to observe the morphology of self-assembled casein micelles(the main protein in milk) in the milky precipitate. The micelles formed in casein-terpenoid solutions were characterized using particle size analysis, fluorescence spectroscopy, ultraviolet spectroscopy, and Fourier-transform infrared(FTIR) spectroscopy. TEM observations confirmed the presence of casein micelles in the milky precipitate. Characterization results showed that with increasing concentrations of toxic terpenoids, the average particle size of casein micelles increased, fluorescence intensity of the solution decreased, the maximum absorption wavelength in the UV spectrum shifted, and significant changes occurred in the infrared spectrum, indicating that interactions occurred between casein micelles and toxic terpenoid components. These findings indicate that the cathartic effect of Euphorbiae Ebracteolatae Radix becomes milder and its intestinal inflammatory toxicity is reduced after milk processing. The detoxification mechanism is that terpenoid components in Euphorbiae Ebracteolatae Radix reassemble with casein in milk to form micelles, promoting the transfer of some terpenoids into the milky precipitate.
Animals
;
Mice
;
Milk/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Male
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/drug effects*
;
Interleukin-1beta/immunology*
;
Tandem Mass Spectrometry
;
Female
4.Mediating effect of sleep duration between depression symptoms and myopia in middle school students.
Wei DU ; Xu-Xiang YANG ; Ru-Shuang ZENG ; Chun-Yao ZHAO ; Zhi-Peng XIANG ; Yuan-Chun LI ; Jie-Song WANG ; Xiao-Hong SU ; Xiao LU ; Yu LI ; Jing WEN ; Dang HAN ; Qun DU ; Jia HE
Chinese Journal of Contemporary Pediatrics 2025;27(3):359-365
OBJECTIVES:
To explore the mediating role of sleep duration in the relationship between depression symptoms and myopia among middle school students.
METHODS:
This study was a cross-sectional research conducted using a stratified cluster random sampling method. A total of 1 728 middle school students were selected from two junior high schools and two senior high schools in certain urban areas and farms of the Xinjiang Production and Construction Corps. Questionnaire surveys and vision tests were conducted among the students. Spearman analysis was used to analyze the correlation between depression symptoms, sleep duration, and myopia. The Bootstrap method was employed to investigate the mediating effect of sleep duration between depression symptoms and myopia.
RESULTS:
The prevalence of myopia in the overall population was 74.02% (1 279/1 728), with an average sleep duration of (7.6±1.0) hours. The rate of insufficient sleep was 83.62% (1 445/1 728), and the proportion of students exhibiting depression symptoms was 25.29% (437/1 728). Correlation analysis showed significant negative correlations between visual acuity in both eyes and sleep duration with depressive emotions as measured by the Center for Epidemiologic Studies Depression Scale (with correlation coefficients of -0.064, -0.084, and -0.199 respectively; P<0.01), as well as with somatic symptoms and activities (with correlation coefficients of -0.104, -0.124, and -0.233 respectively; P<0.01) and interpersonal relationships (with correlation coefficients of -0.052, -0.059, and -0.071 respectively; P<0.05). The correlation coefficients for left and right eye visual acuity and sleep duration were 0.206 and 0.211 respectively (P<0.001). Sleep duration exhibited a mediating effect between depression symptoms and myopia (indirect effect=0.056, 95%CI: 0.029-0.088), with the mediating effect value for females (indirect effect=0.066, 95%CI: 0.024-0.119) being higher than that for males (indirect effect=0.042, 95%CI: 0.011-0.081).
CONCLUSIONS
Sleep duration serves as a partial mediator between depression symptoms and myopia in middle school students.
Humans
;
Myopia/etiology*
;
Male
;
Female
;
Depression/physiopathology*
;
Cross-Sectional Studies
;
Sleep
;
Adolescent
;
Students
;
Child
;
Time Factors
;
Sleep Duration
5.Mechanism and Application of Chinese Herb Medicine in Treatment of Peripheral Nerve Injury.
Yu-Qing CHEN ; Yan-Xian ZHANG ; Xu ZHANG ; Yong-Mei LYU ; Zeng-Li MIAO ; Xiao-Yu LIU ; Xu-Chu DUAN
Chinese journal of integrative medicine 2025;31(3):270-280
Peripheral nerve injury (PNI) encompasses damage to nerves located outside the central nervous system, adversely affecting both motor and sensory functions. Although peripheral nerves possess an intrinsic capacity for self-repair, severe injuries frequently result in significant tissue loss and erroneous axonal junctions, thereby impeding complete recovery and potentially causing neuropathic pain. Various therapeutic strategies, including surgical interventions, biomaterials, and pharmacological agents, have been developed to enhance nerve repair processes. While preclinical studies in animal models have demonstrated the efficacy of certain pharmacological agents in promoting nerve regeneration and mitigating inflammation, only a limited number of these agents have been translated into clinical practice to expedite nerve regeneration. Chinese herb medicine (CHM) possesses a longstanding history in the treatment of various ailments and demonstrates potential efficacy in addressing PNI through its distinctive, cost-effective, and multifaceted methodologies. This review critically examines the advancements in the application of CHM for PNI treatment and nerve regeneration. In particular, we have summarized the most commonly employed and rigorously investigated CHM prescriptions, individual herbs, and natural products, elucidating their respective functions and underlying mechanisms in the context of PNI treatment. Furthermore, we have deliberated on the prospective development of CHM in both clinical practice and fundamental research.
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Peripheral Nerve Injuries/drug therapy*
;
Animals
;
Nerve Regeneration/drug effects*
;
Medicine, Chinese Traditional
6.Discovery of a novel AhR-CYP1A1 axis activator for mitigating inflammatory diseases using an in situ functional imaging assay.
Feng ZHANG ; Bei ZHAO ; Yufan FAN ; Lanhui QIN ; Jinhui SHI ; Lin CHEN ; Leizhi XU ; Xudong JIN ; Mengru SUN ; Hongping DENG ; Hairong ZENG ; Zhangping XIAO ; Xin YANG ; Guangbo GE
Acta Pharmaceutica Sinica B 2025;15(1):508-525
The aryl hydrocarbon receptor (AhR) plays a crucial role in regulating many physiological processes. Activating the AhR-CYP1A1 axis has emerged as a novel therapeutic strategy against various inflammatory diseases. Here, a practical in situ cell-based fluorometric assay was constructed to screen AhR-CYP1A1 axis modulators, via functional sensing of CYP1A1 activities in live cells. Firstly, a cell-permeable, isoform-specific enzyme-activable fluorogenic substrate for CYP1A1 was rationally constructed for in-situ visualizing the dynamic changes of CYP1A1 function in living systems, which was subsequently used for discovering the efficacious modulators of the AhR-CYP1A1 axis. Following screening of a compound library, LAC-7 was identified as an efficacious activator of the AhR-CYP1A1 axis, which dose-dependently up-regulated the expression levels of both CYP1A1 and AhR in multiple cell lines. LAC-7 also suppressed macrophage M1 polarization and reduced the levels of inflammatory factors in LPS-induced bone marrow-derived macrophages. Animal tests showed that LAC-7 could significantly mitigate DSS-induced ulcerative colitis and LPS-induced acute lung injury in mice, and markedly reduced the levels of multiple inflammatory factors. Collectively, an optimized fluorometric cell-based assay was devised for in situ functional imaging of CYP1A1 activities in living systems, which strongly facilitated the discovery of efficacious modulators of the AhR-CYP1A1 axis as novel anti-inflammatory agents.
7.VIRMA-mediated SHQ1 m6A modification enhances liver regeneration through an HNRNPA2B1-dependent mechanism.
Hao CHEN ; Haichuan WANG ; Jiwei HUANG ; Guoteng QIU ; Zheng ZHANG ; Lin XU ; Xiao MA ; Zhen WANG ; Xiangzheng CHEN ; Yong ZENG
Acta Pharmaceutica Sinica B 2025;15(10):5212-5230
N6-Methyladenosine (m6A) modification is a crucial post-transcriptional regulatory mechanism and the most abundant and highly conserved RNA epigenetic modification in eukaryotes. Previous studies have indicated the involvement of m6A modification in various tissue regeneration processes, including liver regeneration. Vir-like m6A methyltransferase associated protein (VIRMA) is an m6A methyltransferase with robust methylation capability. However, its role in liver regeneration remains poorly understood. In this study, we generated liver-specific Virma knockout mice using the Cre-loxP system and investigated the biological functions of VIRMA in liver regeneration using both the Associating Liver Partition and Portal vein Ligation for Staged Hepatectomy (ALPPS) mouse model and the carbon tetrachloride (CCl4) mouse model. The expression level of VIRMA was rapidly up-regulated after ALPPS surgery and gradually down-regulated during liver repair. Virma deficiency significantly impaired liver regeneration capacity and disrupted cell cycle progression. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) analysis revealed that Shq1 is an effective downstream target of VIRMA-mediated m6A modification. The upregulation of Shq1 enhanced the proliferation ability of cells, which was attenuated by the specific AKT inhibitor ipatasertib. Supplementation of Shq1 in vivo alleviated the liver cell proliferation inhibition caused by Virma deficiency. Furthermore, the m6A-binding protein heterogeneous nuclear ribonucleoprotein a2b1 (HNRNPA2B1) enhanced the mRNA stability of Shq1. Mechanistically, Virma deficiency resulted in decreased m6A modification on Shq1 mRNA, leading to reduced binding ability of m6A-binding protein HNRNPA2B1 with Shq1, thereby decreasing the mRNA stability of Shq1 and reducing its protein expression level. Downregulation of Shq1 inhibited the PI3K/AKT pathway, thereby suppressing cell proliferation and cell cycle progression, ultimately impeding liver regeneration. In summary, our results demonstrate that VIRMA plays a critical role in promoting liver regeneration by regulating m6A modification, providing valuable insights into the epigenetic regulation during liver regeneration.
8.A Novel Model of Traumatic Optic Neuropathy Under Direct Vision Through the Anterior Orbital Approach in Non-human Primates.
Zhi-Qiang XIAO ; Xiu HAN ; Xin REN ; Zeng-Qiang WANG ; Si-Qi CHEN ; Qiao-Feng ZHU ; Hai-Yang CHENG ; Yin-Tian LI ; Dan LIANG ; Xuan-Wei LIANG ; Ying XU ; Hui YANG
Neuroscience Bulletin 2025;41(5):911-916
9.Applications and challenges of DNA barcoding in rapid radiation groups: Rhodiola (Crassulaceae) as a case study.
Jinxin LIU ; Erhuan ZANG ; Yu TIAN ; Xinyi LI ; Tianyi XIN ; Lingchao ZENG ; Lijia XU ; Peigen XIAO
Chinese Herbal Medicines 2025;17(3):555-561
OBJECTIVE:
Rhodiolae Crenulatae Radix et Rhizoma (Hongjingtian in Chinese, RCRR), the roots and rhizomes of Rhodiola crenulata and its application in the medicinal market is very chaotic. In this study, DNA barcoding database and identification engine of Rhodiola species were established, decoction pieces from the medicinal market were identified, and the application and challenges of DNA barcoding in the rapid radiation of Rhodiola species were analyzed. This study provides reference for the protection, rational development, and utilization of endangered resources within Rhodiola species.
METHODS:
A total of 50 original plant samples from 20 species of the genus Rhodiola from Hebei, Xinjiang, Tibet, Jilin, and other major production areas were collected. Theses samples cover the typical distribution area (Qinghai-Tibetan Platea) of Rhodiola species and other scattered alpine regions (Changbai Mountain, Taibai Mountain, Lushan Mountain, etc.), it encompasses all Rhodiola species with thick rhizomes in China. ITS2 and psbA-trnH barcode of Rhodiola database (BORD) were established and an identification engine named Rhodiola-IDE was developed. The stability and accuracy of the standard DNA barcoding database were evaluated using two datasets. Rhodiola-IDE identified 31 decoction pieces of RCRR from the medicinal material market.
RESULTS:
The BORD containing 1 532 sequences of 88 Rhodiola species has been established, and the identification efficiency results showed good accuracy and stability. According to the Chinese Pharmacopoeia (2020 edition), 23 samples (74.2%) were identified as authentic R. crenulata, while the rest of the marketed varieties were R. kirilowii, R. dumulosa, and R. fastigiata. The product label "Larger flower, Hongjingtian" was identified as R. crenulata. Samples labeled as "Smaller flower, Hongjingtian" were identified as R. crenulata, R. kirilowii, and R. fastigiata.
CONCLUSION
ITS2 and psbA-trnH barcodes can identify monophyletic groups represented by R. crenulata. However, for non-monophyletic species, it is necessary to collect as many samples as possible and combine them with multiple markers for joint identification. This study discussed the application and challenges of DNA barcodes in Rhodiola under rapid radiation conditions, providing a scientific basis for the rational development and utilization of Rhodiola varieties.
10.Endoplasmic reticulum membrane remodeling by targeting reticulon-4 induces pyroptosis to facilitate antitumor immune.
Mei-Mei ZHAO ; Ting-Ting REN ; Jing-Kang WANG ; Lu YAO ; Ting-Ting LIU ; Ji-Chao ZHANG ; Yang LIU ; Lan YUAN ; Dan LIU ; Jiu-Hui XU ; Peng-Fei TU ; Xiao-Dong TANG ; Ke-Wu ZENG
Protein & Cell 2025;16(2):121-135
Pyroptosis is an identified programmed cell death that has been highly linked to endoplasmic reticulum (ER) dynamics. However, the crucial proteins for modulating dynamic ER membrane curvature change that trigger pyroptosis are currently not well understood. In this study, a biotin-labeled chemical probe of potent pyroptosis inducer α-mangostin (α-MG) was synthesized. Through protein microarray analysis, reticulon-4 (RTN4/Nogo), a crucial regulator of ER membrane curvature, was identified as a target of α-MG. We observed that chemically induced proteasome degradation of RTN4 by α-MG through recruiting E3 ligase UBR5 significantly enhances the pyroptosis phenotype in cancer cells. Interestingly, the downregulation of RTN4 expression significantly facilitated a dynamic remodeling of ER membrane curvature through a transition from tubules to sheets, consequently leading to rapid fusion of the ER with the cell plasma membrane. In particular, the ER-to-plasma membrane fusion process is supported by the observed translocation of several crucial ER markers to the "bubble" structures of pyroptotic cells. Furthermore, α-MG-induced RTN4 knockdown leads to pyruvate kinase M2 (PKM2)-dependent conventional caspase-3/gasdermin E (GSDME) cleavages for pyroptosis progression. In vivo, we observed that chemical or genetic RTN4 knockdown significantly inhibited cancer cells growth, which further exhibited an antitumor immune response with anti-programmed death-1 (anti-PD-1). In translational research, RTN4 high expression was closely correlated with the tumor metastasis and death of patients. Taken together, RTN4 plays a fundamental role in inducing pyroptosis through the modulation of ER membrane curvature remodeling, thus representing a prospective druggable target for anticancer immunotherapy.
Pyroptosis/immunology*
;
Humans
;
Endoplasmic Reticulum/immunology*
;
Animals
;
Nogo Proteins/antagonists & inhibitors*
;
Mice
;
Cell Line, Tumor
;
Xanthones/pharmacology*
;
Neoplasms/pathology*
;
Mice, Nude

Result Analysis
Print
Save
E-mail