1.Construction and Verification of An Integrated Traditional Chinese and Western Medicine Model for Predicting Malignant Risk of Pulmonary Nodules
Qian YANG ; Jingmin XIAO ; Yuanbing CHEN ; Lei WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):129-139
ObjectiveThis study explored the risk factors for malignant risks of pulmonary nodules based on clinical data,constructed an integrated traditional Chinese and Western medicine model for predicting malignant risks of pulmonary nodules, and visualized the prediction results by using a nomogram. MethodsBased on a cross-sectional survey study design,patients with pulmonary nodules who were hospitalized in the Department of Respiratory and Cardiothoracic Surgery of Guangdong Provincial Hospital of Traditional Chinese Medicine from April 2023 to January 2024 were included. The dataset was randomly divided into a training set and a validation set according to 7∶3. In the training set,predictive factors were selected through univariate Logistic regression analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis,and Logistic regression models were built. The discriminative ability,calibration,and clinical decision-making curves of the Western medicine model and the integrated traditional Chinese and Western medicine prediction model were compared to select the optimal model,which was then visualized in a nomogram. ResultsThis study included a total of 366 patients,and they were divided into a training set (258 cases) and a validation set (108 cases). Seven predictive factors were considered including age,preference for fatty and greasy foods,history of environmental or occupational exposure,Qi deficiency,Yang deficiency,nodule density,and nodule diameter. A Logistic regression model was constructed. A Western medicine model,defined as model1,was created using only age,history of environmental or occupational exposure,nodule density,and nodule diameter as predictive factors. In addition,an integrated traditional Chinese and Western medicine model,defined as model2,was created by adding preference for fatty and greasy foods, Qi deficiency,and Yang deficiency as predictive factors. Model2 demonstrated better predictive performance in both the training and validation sets. Its accuracy in training set was 0.740,with precision of 0.825, recall of 0.829, F1 score of 0.827, the area under the curve (AUC)of 0.865 (95% confidence interval (CI):0.815-0.915), and a Brier score of 0.122. The accuracy in validation set was 0.731, with precision of 0.776, recall of 0.831, F1 score of 0.803, AUC of 0.852 (95%CI:0.776-0.927), and a Brier score of 0.149. The calibration curve and decision-making curve analysis showed that this model exhibited good consistency and clinical utility in prediction. The equation for the malignant probability of pulmonary nodules was defined as p=
2.A survey of HPV and vaccine cognition and vaccination intention among primary health care workers in Shanghai
Lei CHEN ; Yuanying LU ; Yahong SHEN ; Qiaoying ZHANG ; Haiying SHI ; Minglu SHANG ; Xiao ZHANG
Journal of Public Health and Preventive Medicine 2025;36(2):89-90
Objective To understand the awareness and willingness of primary medical staff in Songjiang District, Shanghai towards human papillomavirus (HPV) and its vaccines, and to provide references for improving the vaccination willingness of HPV vaccine and primary prevention of cervical cancer. Methods From July to August 2023, a questionnaire survey was conducted among the in-service medical staff in 17 community health service centers in Songjiang District, Shanghai, using the random sampling method. Descriptive analysis, χ2 test and logistic regression were used for statistical analysis. Results A total of 951 valid questionnaires were collected during the survey. The awareness rate of HPV among medical staff was 92.74%, and the awareness rate of HPV vaccine was 93.38%. The maximum score for HPV knowledge was 6 points, with an average score of (3.99±1.34) points. The maximum score for HPV vaccine knowledge was 10 points, with an average score of (5.63±1.61) points. 881 (92.64%) medical staff were willing to receive or recommend HPV vaccination. Multivariate analysis showed that concerns about being infected with HPV (OR=2.648, 95% CI: 1.459-4.806), qualified score on HPV vaccine knowledge (OR=1.717, 95% CI: 1.012-2.912), high price burden of HPV vaccine (OR=0.343, 95% CI: 0.157-0.746), and concerns about side effects of vaccination (OR=0.443, 95% CI: 0.243-0.805) were the influencing factors for medical staff's willingness to vaccinate. Conclusion There is insufficient knowledge of HPV and its vaccines among primary medical personnel in Songjiang District, Shanghai. It is necessary to strengthen the continuing education of medical personnel through multiple channels, supplement the HPV-related knowledge system, and eliminate their concerns about vaccines.
3.Analysis of Treatment of Diabetic Kidney Disease with Modified Buyang Huanwutang Based on 5hmC-Seal Sequencing Technology
Baixin ZHEN ; Haoyu CHEN ; Duolikun MAIMAITIYASEN ; Xuehui LI ; Hong XIAO ; Xiaxuan LI ; Kuerban SUBINUER ; Lei ZHANG ; Hangyu CHEN ; Jian LIN ; Linlin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):208-217
ObjectiveTo improve the therapeutic effect of Buyang Huanwutang(BYHW) on diabetic kidney disease (DKD) and explore new methods for developing new Chinese medicine decoctions,we utilized 5-hydroxymethylcytosine (5hmC)-Seal sequencing technology and network pharmacology to modify BYHW. MethodsWe selected 14 diabetes mellitus (DM) patients and 15 DKD patients hospitalized in the Department of Endocrinology of Peking University Third Hospital in 2021. Circulating free DNA (cfDNA) in the patients’ plasma was sequenced. After data processing and screening, we performed temporal clustering analysis to select a DKD 5hmC gene set, which was then cross-validated with a DKD database gene set to obtain the DKD gene set. We retrieved target genes of the seven herbal components of BYHW from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Encyclopedia of Traditional Chinese Medicine (ETCM), and performed cross-analysis with the DKD gene set to identify common genes shared by the disease and the Chinese medicines. A protein-protein interaction (PPI) network was constructed for the common genes to screen out the key genes. Chinese medicines targeting these key genes were searched against ETCM to identify removable Chinese medicines. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed on non-common DKD genes, and key genes in DKD-related pathways were selected based on machine learning. The GSE30529 dataset was used to verify the expression trends of 5hmC-modified genes and the feasibility of target genes as drug targets. TCMBank was used to search for target genes and obtain compounds targeting these genes and the corresponding Chinese medicines to construct a "key target-compound-Chinese medicine" network. Molecular docking was employed to verify the binding affinity of compounds with key targets. TCMSP and ETCM were used to search and count the candidate Chinese medicines targeting DKD-related genes, and a new decoction was formed by adding the selected Chinese medicines. A mouse model of DKD was established to examine the efficacy of the new decoction based on the mouse body mass, random blood glucose, urinary microalbumin (mALB), serum creatinine (Scr), and blood urea nitrogen (BUN) and by hematoxylin-eosin staining, periodic acid-Schiff staining, Masson staining, immunofluorescence assay, and Real-time PCR. ResultsThe cross-analysis results showed that the DKD gene set included 507 genes, of which 30 were target genes of BYHW. The PPI analysis indicated that the top 15% target genes regarding the degree were interleukin-6 (IL-6), Toll-like receptor 4 (TLR4), lactotransferrin (LTF), lipoprotein lipase (LPL), and sterol regulatory element-binding transcription factor 1 (SREBF1). Persicae Semen and Pheretima in BYHW were unrelated to key genes and removed. Machine learning identified 10 potential target genes, among which TBC1 domain family member 5 (TBC1D5), RAD51 paralog B (RAD51B), and proteasome 20S subunit alpha 6 (PSMA6) had expression trends consistent with the GSE30529 dataset and could serve as drug targets. The "key target-compound-Chinese medicine" network and molecular docking results indicated that the compounds with good binding affinity to target proteins were arginine, glycine, myristicin, serine, and tyrosine, corresponding to 121 Chinese medicines. The top 10 Chinese medicines targeting DKD-related genes were Lycii Fructus, Ginseng Radix et Rhizoma, Dioscoreae Rhizoma, Rehmanniae Radix Praeparata, Isatidis Radix, Glehniae Radix, Ophiopogonis Radix, Allii Sativi Bulbus, Isatidis Folium, and Bolbostemmatis Rhizoma. Based on traditional Chinese medicine theory, the new decoction was obtained after removal of Persicae Semen and Pheretima and addition of Rehmanniae Radix Praeparata and Dioscoreae Rhizoma. Animal experiment results indicated that the modified BYHW improved the kidney function and inhibited renal fibrosis in DKD mice, with better effects than the original decoction. ConclusionThe BYHW modified based on 5hmC-Seal sequencing demonstrates better performance in inhibiting fibrosis and ameliorating DKD than the original decoction. This elucidates the biomedical theory behind the epigenetic modification of traditional Chinese medicine prescriptions, potentially offering new perspectives for the exploration of these prescriptions
4.Analysis of Treatment of Diabetic Kidney Disease with Modified Buyang Huanwutang Based on 5hmC-Seal Sequencing Technology
Baixin ZHEN ; Haoyu CHEN ; Duolikun MAIMAITIYASEN ; Xuehui LI ; Hong XIAO ; Xiaxuan LI ; Kuerban SUBINUER ; Lei ZHANG ; Hangyu CHEN ; Jian LIN ; Linlin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):208-217
ObjectiveTo improve the therapeutic effect of Buyang Huanwutang(BYHW) on diabetic kidney disease (DKD) and explore new methods for developing new Chinese medicine decoctions,we utilized 5-hydroxymethylcytosine (5hmC)-Seal sequencing technology and network pharmacology to modify BYHW. MethodsWe selected 14 diabetes mellitus (DM) patients and 15 DKD patients hospitalized in the Department of Endocrinology of Peking University Third Hospital in 2021. Circulating free DNA (cfDNA) in the patients’ plasma was sequenced. After data processing and screening, we performed temporal clustering analysis to select a DKD 5hmC gene set, which was then cross-validated with a DKD database gene set to obtain the DKD gene set. We retrieved target genes of the seven herbal components of BYHW from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Encyclopedia of Traditional Chinese Medicine (ETCM), and performed cross-analysis with the DKD gene set to identify common genes shared by the disease and the Chinese medicines. A protein-protein interaction (PPI) network was constructed for the common genes to screen out the key genes. Chinese medicines targeting these key genes were searched against ETCM to identify removable Chinese medicines. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed on non-common DKD genes, and key genes in DKD-related pathways were selected based on machine learning. The GSE30529 dataset was used to verify the expression trends of 5hmC-modified genes and the feasibility of target genes as drug targets. TCMBank was used to search for target genes and obtain compounds targeting these genes and the corresponding Chinese medicines to construct a "key target-compound-Chinese medicine" network. Molecular docking was employed to verify the binding affinity of compounds with key targets. TCMSP and ETCM were used to search and count the candidate Chinese medicines targeting DKD-related genes, and a new decoction was formed by adding the selected Chinese medicines. A mouse model of DKD was established to examine the efficacy of the new decoction based on the mouse body mass, random blood glucose, urinary microalbumin (mALB), serum creatinine (Scr), and blood urea nitrogen (BUN) and by hematoxylin-eosin staining, periodic acid-Schiff staining, Masson staining, immunofluorescence assay, and Real-time PCR. ResultsThe cross-analysis results showed that the DKD gene set included 507 genes, of which 30 were target genes of BYHW. The PPI analysis indicated that the top 15% target genes regarding the degree were interleukin-6 (IL-6), Toll-like receptor 4 (TLR4), lactotransferrin (LTF), lipoprotein lipase (LPL), and sterol regulatory element-binding transcription factor 1 (SREBF1). Persicae Semen and Pheretima in BYHW were unrelated to key genes and removed. Machine learning identified 10 potential target genes, among which TBC1 domain family member 5 (TBC1D5), RAD51 paralog B (RAD51B), and proteasome 20S subunit alpha 6 (PSMA6) had expression trends consistent with the GSE30529 dataset and could serve as drug targets. The "key target-compound-Chinese medicine" network and molecular docking results indicated that the compounds with good binding affinity to target proteins were arginine, glycine, myristicin, serine, and tyrosine, corresponding to 121 Chinese medicines. The top 10 Chinese medicines targeting DKD-related genes were Lycii Fructus, Ginseng Radix et Rhizoma, Dioscoreae Rhizoma, Rehmanniae Radix Praeparata, Isatidis Radix, Glehniae Radix, Ophiopogonis Radix, Allii Sativi Bulbus, Isatidis Folium, and Bolbostemmatis Rhizoma. Based on traditional Chinese medicine theory, the new decoction was obtained after removal of Persicae Semen and Pheretima and addition of Rehmanniae Radix Praeparata and Dioscoreae Rhizoma. Animal experiment results indicated that the modified BYHW improved the kidney function and inhibited renal fibrosis in DKD mice, with better effects than the original decoction. ConclusionThe BYHW modified based on 5hmC-Seal sequencing demonstrates better performance in inhibiting fibrosis and ameliorating DKD than the original decoction. This elucidates the biomedical theory behind the epigenetic modification of traditional Chinese medicine prescriptions, potentially offering new perspectives for the exploration of these prescriptions
5.Effect of Scutellariae Radix Combined with EGFR-TKIs on Non-small Cell Lung Cancer
Yaya YU ; Chenjing LEI ; Zhenzhen XIAO ; Qi MO ; Changju MA ; Lina DING ; Yadong CHEN ; Yanjuan ZHU ; Haibo ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):106-115
ObjectiveTo investigate the effects of Scutellariae Radix combined with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) on cell proliferation, apoptosis, cancer stem cell (CSC) marker expression, and metabolism in non-small cell lung cancer (NSCLC) cells. MethodsThe anti-tumor effects of Scutellariae Radix and EGFR-TKIs (gefitinib or osimertinib) in NSCLC cells were evaluated using the cell counting kit-8 (CCK-8) and Annexin V-FITC/propidium iodide (PI) double staining apoptosis assay. The activity of Scutellariae Radix and EGFR-TKIs in three-dimensional (3D) cultures of NSCLC cells was assessed using the CellTiter-Glo® 3D cell viability assay. The mRNA and protein expression levels of CSC markers, sex determining region y box protein 2 (SOX2) and aldehyde dehydrogenase 1 family member A1 (ALDH1A1), were detected by quantitative real-time polymerase chain reaction (Real-time PCR) and Western blot, respectively. Changes in intracellular reactive oxygen species (ROS) levels were detected by ROS staining, and the redox ratio was detected by femtosecond laser labeling free imaging (FLI). ResultsUnder both two-dimensional (2D) and 3D culture conditions, compared with the blank group and EGFR-TKI group, the combination group showed significantly reduced cell viability and increased apoptosis rate (P<0.05). Compared with the EGFR-TKI group, the mRNA and protein levels of CSC markers were significantly downregulated in the combination group (P<0.05). Additionally, the redox ratio was significantly elevated (P<0.05), and ROS levels were also increased in the combination group compared with the EGFR-TKI group. ConclusionIn NSCLC cells, Scutellariae Radix enhances the redox ratio and increases ROS levels, thereby inhibiting the expression of CSC markers and strengthening the anti-tumor effects of EGFR-TKIs. This provides a novel molecular mechanism by which Scutellariae Radix may enhance the sensitivity of targeted therapies.
6.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
7.Role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 and effect of Bushen Jianpi Huoxue Decoction.
Tong-Ying CHEN ; Sai FU ; Xiao-Yun LI ; Shu-Hua LIU ; Yi-Fu YANG ; Dong-Sheng YANG ; Yun-Jie ZENG ; Yang-Bo LI ; Dan LUO ; Hong-Xing HUANG ; Lei WAN
China Journal of Chinese Materia Medica 2025;50(3):583-589
Osteoporosis(OP) is a senile bone disease characterized by an imbalance between bone remodeling and bone formation. Targeting pathogenesis of kidney deficiency, spleen deficiency, and blood stasis, Bushen Jianpi Huoxue Decoction has a significant effect on the treatment of OP by tonifying kidney, invigorating spleen, and activating blood circulation. MicroRNA(miRNA) and the anti-apoptotic protein B-cell lymphoma-2-like protein 1(BCL2L1) are closely related to bone cell metabolism. Therefore, in this study, the binding of miR-140-5p to BCL2L1 was detected by dual luciferase assay and polymerase chain reaction(PCR). After silencing or overexpressing miR-140-5p, the apoptosis, autophagy, and osteogenic function of human fetal osteoblast cell line 1.19(HFOB1.19) were observed by flow cytometry and Western blot. Bushen Jianpi Huoxue Decoction-containing serum was prepared by intragastric administration of Bushen Jianpi Huoxue Decoction in rats. Different concentrations of Bushen Jianpi Huoxue Decoction-containing serum were used to treat HFOB1.19 with or without miR-140-5p mimic. The expression of osteogenic proteins in each group was observed, and the role of miR-140-5p/BCL2L1 in apoptosis and autophagy of HFOB1.19 was studied, along with the effect of Bushen Jianpi Huoxue Decoction on these processes. As indicated by the dual luciferase assay, miR-140-5p bound to BCL2L1. Flow cytometry and Western blot showed that miR-140-5p promoted apoptosis and inhibited autophagy in HFOB1.19. After intervention with high, medium, and low doses of Bushen Jianpi Huoxue Decoction-medicated serum, compared with the miR-140-5p NC group, the expression of osteocalcin(OCN), osteopontin(OPN), Runt-related transcription factor 2(RUNX2), and transforming growth factor beta 1(TGF-β1) decreased in the miR-140-5p mimic group, while the expression of bone morphogenetic protein 2(BMP2) showed no significant difference under high-dose intervention. Therefore, miR-140-5p/BCL2L1 can promote apoptosis and inhibit autophagy in HFOB1.19. Bushen Jianpi Huoxue Decoction can affect the osteogenic effect of miR-140-5p through BMP2.
MicroRNAs/metabolism*
;
Autophagy/drug effects*
;
Apoptosis/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Cell Line
;
bcl-X Protein/metabolism*
;
Osteoblasts/metabolism*
;
Rats
;
Osteoporosis/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Osteogenesis/drug effects*
8.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
9.Research progress on pharmacological effects and mechanism of α-asarone and β-asarone in Acori Tatarinowii Rhizoma.
Hao WANG ; Lei GAO ; Jin-Lian ZHANG ; Ling-Yun ZHONG ; Shu-Han JIN ; Xiao-Yan CHEN ; Wen ZHANG ; Jia-Wen WEN
China Journal of Chinese Materia Medica 2025;50(9):2305-2316
Acori Tatarinowii Rhizoma is the dried rhizome of Acorus tatarinowii in the family of Tennantiaceae, which has the efficacy of opening up the orifices and expelling phlegm, awakening the mind and wisdom, and resolving dampness and opening up the stomach. Modern studies have shown that volatile oil is the main active ingredient of Acori Tatarinowii Rhizoma, and α-asarone and β-asarone have been proved to be the active ingredients in the volatile oil of Acori Tatarinowii Rhizoma, with pharmacological effects such as anti-Alzheimer's disease, antiepileptic, anti-Parkinson's disease, antidepressant, anticerebral ischemia/reperfusion injury, anti-thrombosis, lipid-lowering, and antitumor. By summarising and outlining the pharmacological effects of α-asarone and β-asarone and elucidating the possible mechanisms of their pharmacological effects, we can provide theoretical basis for the further research and clinical application of Acori Tatarinowii Rhizoma.
Allylbenzene Derivatives
;
Acorus/chemistry*
;
Anisoles/chemistry*
;
Rhizome/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Animals
10.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*


Result Analysis
Print
Save
E-mail