1.Study on the mechanism of Buzhong Yiqi Decoction regulating macrophage polarization in mice with autoimmune thyroiditis
Lanting WANG ; Zhaohan ZHAI ; Shouxin JU ; Liang KONG ; Jie DING ; Yao XIAO ; Yiran CHEN ; Zhimin WANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):529-541
Objective:
To explore the mechanism of Buzhong Yiqi Decoction in modulating macrophage polarization and intervening in autoimmune thyroiditis (AIT) mice.
Methods:
Using the random number table method, 48 SPF-grade NOD.H-2h4 mice were assigned to the normal, model, low-dose (4.10 g/kg), medium-dose (8.19 g/kg), high-dose group (16.38 g/kg) of Buzhong Yiqi Decoction, and selenium yeast tablet (0.026 mg/kg) groups, with eight mice in each group. All groups, except the normal group, were free to drink high iodine water (0.05% sodium iodide) to prepare AIT mouse models for 8 consecutive weeks. After the modeling was complete, each treatment group was orally administered with the corresponding medication, while the normal and model groups were orally administered with an equal volume of distilled water once a day for 8 consecutive weeks. High-performance liquid chromatography with an oscillometric refractive detector was used to analyze the content of Astragaloside Ⅳ in Buzhong Yiqi Decoction. Hematoxylin and eosin staining was used to observe the pathological morphology of mouse thyroid tissue. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of serum thyroid peroxidase antibody (TPO-Ab), thyroglobulin antibody (TgAb), interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α). An immunofluorescence assay was used to detect the positive area percentage of M1 and M2 macrophages in mouse thyroid tissue. Flow cytometry assay was used to detect macrophage polarization in mouse spleen tissue. Real-time fluorescence quantitative PCR was used to detect the mRNA expression of nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3), nuclear factor kappa B inhibitory protein α (IκBα), and nuclear factor-κB (NF-κB) p65 in mouse spleen tissue. Western blotting was used to detect the expression of the phosphorylated IκBα (p-IκBα), phosphorylated NF-κB p65 (p-NF-κB p65), and NLRP3 protein in mouse spleen tissue.
Results:
The content of Astragaloside Ⅳ in Buzhong Yiqi Decoction was (7.09±0.06) g/L. Compared to the normal group, significant lymphocyte infiltration was observed in the thyroid tissue of mice in the model group. The levels of serum TPO-Ab, TgAb, IL-6, and TNF-α increased (P<0.05). The positive area percentage of M1 macrophages in thyroid tissue increased (P<0.05). The proportion of M1 macrophages and M1/M2 in spleen tissue increased (P<0.05). The relative expression levels of NF-κB p65 and NLRP3 mRNA in spleen tissue increased (P<0.05). The relative expression of p-IκBα, p-NF-κB p65, and NLRP3 proteins increased (P<0.05). Compared to the model group, the inflammation infiltration degree in the thyroid tissue of mice in each dose group of Buzhong Yiqi Decoction and selenium yeast tablet group was reduced, the serum TPO-Ab, TgAb, IL-6, TNF-α content was decreased, the spleen tissue M1/M2 was reduced, the expression of NF-κB p65 mRNA was reduced, and the relative expression levels of p-IκBα, p-NF-κB p65 protein were reduced (P<0.05). The Buzhong Yiqi Decoction high-dose and selenium yeast tablets groups showed an increase in IL-10 content, an increase in positive area percentage of M2 macrophages in thyroid tissue, an increase in M2 macrophages proportion in spleen tissue, and a decrease in NLRP3 mRNA and protein relative expression levels (P<0.05).
Conclusion
Buzhong Yiqi Decoction may regulate macrophage polarization by inhibiting the NF-κB/NLRP3 signaling pathway, thus improving the inflammatory damage in mice with AIT.
2.Material basis of toad oil and its pharmacodynamic effect in a mouse model of atopic dermatitis.
Yu-Yang LIU ; Xin-Wei YAN ; Bao-Lin BIAN ; Yao-Hua DING ; Xiao-Lu WEI ; Meng-Yao TIAN ; Wei WANG ; Hai-Yu ZHAO ; Yan-Yan ZHOU ; Hong-Jie WANG ; Ying YANG ; Nan SI
China Journal of Chinese Materia Medica 2025;50(1):165-177
This study aims to comprehensively analyze the material basis of toad visceral oil(hereafter referred to as toad oil), and explore the pharmacological effect of toad oil on atopic dermatitis(AD). Ultra-high performance liquid chromatography-linear ion trap/orbitrap high-resolution mass spectrometry(UHPLC-LTQ-Orbitrap-MS) and gas chromatography-mass spectrometry(GC-MS) were employed to comprehensively identify the chemical components in toad oil. The animal model of AD was prepared by the hapten stimulation method. The modeled animals were respectively administrated with positive drug(0.1% hydrocortisone butyrate cream) and low-and high-doses(1%, 10%) of toad oil by gavage. The effect of toad oil on AD was evaluated with the AD score, ear swelling rate, spleen index, and pathological section results as indicators. A total of 99 components were identified by UHPLC-LTQ-Orbitrap-MS, including 14 bufadienolides, 7 fatty acids, 6 alkaloids, 10 ketones, 18 amides, and other compounds. After methylation of toad oil samples, a total of 20 compounds were identified by GC-MS. Compared with the model group, the low-and high-dose toad oil groups showed declined AD score, ear swelling rate, and spleen index, alleviated skin lesions, and reduced infiltrating mast cells. This study comprehensively analyzes the chemical composition and clarifies the material basis of toad oil. Meanwhile, this study proves that toad oil has a good therapeutic effect on AD and is a reserve resource of traditional Chinese medicine for external use in the treatment of AD.
Animals
;
Dermatitis, Atopic/immunology*
;
Disease Models, Animal
;
Mice
;
Male
;
Gas Chromatography-Mass Spectrometry
;
Humans
;
Bufonidae
;
Oils/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Female
;
Mice, Inbred BALB C
3.Detection and sequence analysis of broad bean wilt virus 2 on Rehmannia glutinosa.
Xiao-Long DENG ; Jie YAO ; Lang QIN ; Shi-Wen DING ; Tie-Lin WANG ; Kun ZHANG ; Lei CHENG ; Zhen HE
China Journal of Chinese Materia Medica 2025;50(7):1741-1747
To clarify the occurrence and distribution of broad bean wilt virus 2(BBWV2) on Rehmannia glutinosa, this study collected 87 R. glutinosa samples with typical symptoms of viral disease such as chlorosis and crumple from Wenxian county and Wuzhi county in Jiaozuo city, Henan province and Qiaocheng district in Bozhou city, Anhui province. The BBWV2 CP target band was amplified from 37 R. glutinosa samples by RT-PCR technology. The total detection rate reached 42.5%, among which 43.0% was detected in samples from Henan province. The detection rate in samples from Anhui province was 37.5%. 37 BBWV2 CP sequences were obtained by cloning and sequencing of BBWV2 positive samples(data has been submitted to GenBank, accession numbers: PP407959-PP407995), and the sequence analysis of these CP sequences with 91 other BBWV2 isolates in GenBank showed a high genetic diversity with a consistency rate of 70.8%-100%. Meanwhile, phylogenetic analysis showed that BBWV2 could be divided into three groups according to CP sequences, among which the BBWV2 in R. glutinosa isolates obtained in this study were all located in group 3. This study identified the differences in the occurrence, distribution, and genetic diversity of BBWV2 in R. glutinosa from Henan province and Anhui province and provided a theoretical basis for the prevention and control of BBWV2.
Rehmannia/virology*
;
Phylogeny
;
Plant Diseases/virology*
;
China
;
Molecular Sequence Data
;
Fabavirus/classification*
4.A new triterpenoid from Elephantopus scaber.
Zu-Xiao DING ; Hong-Xi XIE ; Lin CHEN ; Jun-Jie HAO ; Yan-Qiu LUO ; Zhi-Yong JIANG ; Shi-Kui XU
China Journal of Chinese Materia Medica 2025;50(5):1224-1230
The chemical constituents of the petroleum ether extract derived from the 90% ethanol extract of Elephantopus scaber were investigated. By silica gel column chromatography, C_(18), MCI column chromatography and semi-preparative high performance liquid chromatography, ten compounds were isolated. Their structures were identified as 3β-hydroxy-6β,7β-epoxytaraxeran-14-ene(1), 3β-hydroxyolean-12-en-28-oic acid(2), D-friedoolean-14-ene-3β,7α-diol(3), 3β-hydroxy-11α-methoxyolean-12-ene(4), 3β-hydroxyolean-11,13(18)-diene(5), 11α-hydroxy-β-amyrin(6), betulinic acid(7), 3β-hydroxy-30-norlupan-20-one(8), 6-acetonylchelerythrine(9), and 4',5'-dehydrodiodictyonema A(10) by analysis of the 1D NMR, 2D NMR, MS, and IR spectral data. Among them, compound 1 was a new triterpene and other compounds except compounds 2 and 7 were isolated from this plant for the first time.
Triterpenes/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Molecular Structure
;
Asteraceae/chemistry*
;
Chromatography, High Pressure Liquid
;
Magnetic Resonance Spectroscopy
5.Differences in growth and secondary metabolite accumulation of Panax quinquefolius between understory and field planting in Shandong, China.
Yue WANG ; Xin-Ying MAO ; Yu DING ; Hong-Xia YU ; Zhi-Fang RAN ; Xiao-Li CHEN ; Jie ZHOU
China Journal of Chinese Materia Medica 2025;50(6):1524-1533
In order to compare the differences in growth and secondary metabolite accumulation of Panax quinquefolius between understory and field planting, growth indexes, photosynthetic characteristics, soil enzyme activities, secondary metabolite contents, and antioxidant activities of P. quinquefolius under different planting modes were examined and compared, and One-way analysis of variance(ANOVA) and correlation analyses were carried out by using the software SPSS 25.0 and GraphPad Prism 9.5. The Origin 2021 software was used for plotting. The results showed that compared with those under field planting, the plant height, leaf length, leaf width, photosynthetic rate, and chlorophyll content of P. quinquefolius under understory planting were significantly reduced, and arbuscular mycorrhizal fungi(AMF) infestation rate and infestation intensity, ginsenoside content, and antioxidant activity were significantly increased. The activities of inter-root soil urease, sucrase, and catalase increased, while the activities of non-inter-root soil urease and alkaline phosphatase increased. Correlation analyses showed that the plant height and leaf length of P. quinquefolius plant were significantly positively correlated with net photosynthetic rate, transpiration rate, chlorophyll content, and electron transfer rate(P<0.05), while ginsenoside content was significantly negatively correlated with net photosynthetic rate, chlorophyll content, and electron transfer rate(P<0.05) and significantly positively correlated with AMF infestation rate and infestation intensity(P<0.05). In addition, ginsenoside content was significantly positively correlated with the activities of inter-root soil sucrase, urease, and catalase(P<0.05). This study provides basic data for revealing the mechanism of secondary metabolite accumulation in P. quinquefolius under understory planting and for exploring and practicing the ecological mode of P. quinquefolius under understory planting.
Panax/microbiology*
;
China
;
Secondary Metabolism
;
Soil/chemistry*
;
Photosynthesis
;
Plant Leaves/metabolism*
;
Chlorophyll/metabolism*
;
Mycorrhizae
6.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
7.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
8.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy
9.Influencing factors of positive surgical margins after radical resection of prostate cancer.
Chang-Jie SHI ; Zhi-Jian REN ; Ying ZHANG ; Ding WU ; Bo FANG ; Xiu-Quan SHI ; Wen CHENG ; Dian FU ; Xiao-Feng XU
National Journal of Andrology 2025;31(4):328-332
OBJECTIVE:
To investigate the influencing factors of pathological positive surgical margins (PSM) after radical resection of prostate cancer.
METHODS:
The clinical data of 407 patients who underwent radical resection of prostate cancer in our hospital from 2011 to 2020 were retrospectively analyzed. And the patients were divided into two groups according to postoperative pathological results. Single factor analysis was used to evaluate the differences in postoperative Gleason score, preoperative total prostate-specific antigen (tPSA), preoperative serum free prostate-specific antigen to preoperative tPSA ratio (fPSA/ tPSA), clinical stage, postoperative pathological stage, operation method, age, body mass index (BMI), diameter and volume of prostate tumor. Multivariate logistic regression was used to determine the independent risk factor of PSM.
RESULTS:
Among 407 patients with prostate cancer, 179 cases (43.98%) were positive. Univariate analysis showed that there were significant differences in postoperative Gleason score, preoperative tPSA, clinical stage and postoperative pathological stage between the two groups (P<0.05). And Gleason score, preoperative tPSA and pathologic stage were independent risk factors for PSM.
CONCLUSION
There are relationships between PSM and postoperative Gleason score, tPSA, clinical T stage, postoperative pathologic pT stage. Among them, postoperative Gleason score (Gleason=7 points, Gleason≥8 points), preoperative total prostate-specific antigen (tPSA > 20 μg/L), and postoperative pathologic pT stage (pT3a, pT3b) were independent risk factors for positive pathological margins of prostate cancer.
Margins of Excision
;
Prostatic Neoplasms/surgery*
;
Prostatectomy/statistics & numerical data*
;
Prostate/surgery*
;
Retrospective Studies
;
Neoplasm Grading/statistics & numerical data*
;
Prostate-Specific Antigen/blood*
;
Neoplasm Staging/statistics & numerical data*
;
Postoperative Period
;
Risk Factors
;
Humans
;
Male
10.Prim-O-glucosylcimifugin mitigates atopic dermatitis by inhibiting Th2 differentiation through LCK phosphorylation modulation.
Hang ZHAO ; Xin MA ; Hao WANG ; Xiao-Jie DING ; Le KUAI ; Jian-Kun SONG ; Zhan ZHANG ; Dan YANG ; Chun-Jie GAO ; Bin LI ; Mi ZHOU
Journal of Integrative Medicine 2025;23(3):309-319
OBJECTIVE:
To assess the safety and topical efficacy of prim-O-glucosylcimifugin (POG) and investigate the molecular mechanisms of its therapeutic effects in atopic dermatitis (AD).
METHODS:
The effects of POG on human keratinocyte cell viability and its anti-inflammatory properties were evaluated using cell counting kit-8 assay and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Subsequently, the impact of POG on the differentiation of cluster of differentiation (CD) 4+ T cell subsets, including T-helper type (Th) 1, Th2, Th17, and regulatory T (Treg), was examined through in vitro experiments. Network pharmacology analysis was used to elucidate POG's therapeutic mechanisms. Furthermore, the therapeutic potential of topically applied POG was further evaluated in a calcipotriol-induced mouse model of AD. The protein and transcript levels of inflammatory markers, including cytokines, lymphocyte-specific protein tyrosine kinase (Lck) mRNA, and LCK phosphorylation (p-LCK), were quantified using immunohistochemistry, RT-qPCR, and Western blot analysis.
RESULTS:
POG was able to suppress cell proliferation and downregulate the transcription of interleukin 4 (Il4) and Il13 mRNA. In vitro experiments indicated that POG significantly inhibited the differentiation of Th2 cells, whereas it exerted negligible influence on the differentiation of Th1, Th17 and Treg cells. Network pharmacology identified LCK as a key therapeutic target of POG. Moreover, the topical application of POG effectively alleviated skin lesions in the calcipotriol-induced AD mouse models without causing pathological changes in the liver, kidney or spleen tissues. POG significantly reduced the levels of Il4, Il5, Il13, and thymic stromal lymphopoietin (Tslp) mRNA in the AD mice. Concurrently, POG enhanced the expression of p-LCK protein and Lck mRNA.
CONCLUSION
Our research revealed that POG inhibits Th2 cell differentiation by promoting p-LCK protein expression and hence effectively alleviates AD-related skin inflammation. Please cite this article as: Zhao H, Ma X, Wang H, Ding XJ, Kuai L, Song JK, Zhang Z, Yang D, Gao CJ, Li B, Zhou M. Prim-O-glucosylcimifugin mitigates atopic dermatitis by inhibiting Th2 differentiation through LCK phosphorylation modulation. J Integr Med. 2025; 23(3): 309-319.
Dermatitis, Atopic/drug therapy*
;
Animals
;
Humans
;
Cell Differentiation/drug effects*
;
Phosphorylation/drug effects*
;
Mice
;
Th2 Cells/drug effects*
;
Keratinocytes/drug effects*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Calcitriol/analogs & derivatives*


Result Analysis
Print
Save
E-mail