1.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
2.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
3.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
4.Research on Automatic Microalgae Detection System Based on Deep Learning
Rui-Jie XIANG ; Hao LIU ; Zhen LU ; Ze-Yu XIAO ; Hai-Peng LIU ; Yin-Chu WANG ; Xiao PENG ; Wei YAN
Progress in Biochemistry and Biophysics 2024;51(1):177-189
ObjectiveThe scale of microalgae farming industry is huge. During farming, it is easy for microalgae to be affected by miscellaneous bacteria and other contaminants. Because of that, periodic test is necessary to ensure the growth of microalgae. Present microscopy imaging and spectral analysis methods have higher requirements for experiment personnel, equipment and sites, for which it is unable to achieve real-time portable detection. For the purpose of real-time portable microalgae detection, a real-time microalgae detection system of low detection requirement and fast detection speed is needed. MethodsThis study has developed a microalgae detection system based on deep learning. A microscopy imaging device based on bright field was constructed. With imaged captured from the device, a neural network based on YOLOv3 was trained and deployed on microcomputer, thus realizing real-time portable microalgae detection. This study has also improved the feature extraction network by introducing cross-region residual connection and attention mechanism and replacing optimizer with Adam optimizer using multistage and multimethod strategy. ResultsWith cross-region residual connection, the mAP value reached 0.92. Compared with manual result, the detection error was 2.47%. ConclusionThe system could achieve real-time portable microalgae detection and provide relatively accurate detection result, so it can be applied to periodic test in microalgae farming.
5.Investigate the effect of Shenling Baizhu Powder on the spermatogenic function of the testes in hyperuricemic mice based on ferroptosis
Xiaocui JIANG ; Min XIAO ; Yinjuan LYU ; Chaoyang WANG ; Zhongyi ZHU ; Heng HAO ; Jigang CAO
Journal of Beijing University of Traditional Chinese Medicine 2024;47(8):1100-1110
Objective We aimed to investigate the effect of ferroptosis on Shenling Baizhu Powder,a compound prescription of Chinese herbal medicine,in improving testicular spermatogenic function in hyperuricemic mice with spermatogenic dysfunction. Methods Sixty BALB/c mice were randomly divided into normal group,model group,Shenling Baizhu Powder high-,medium-,and low-dose groups (20.14,10.07,5.04 g/kg,by gavage),and ferrostatin-1(Fer-1) group (0.8 mg/kg,by tail vein injection),with 10 mice each group. Except for the normal group,the other groups were intraperitoneally injected with potassium oxonate suspension[600mg/(kg·d)]for 7 days to establish the hyperuricemic model,and then the corresponding intervention was given for consecutive 14 days. Content of serum uric acid (UA),testicular Fe2+,reduced glutathione (GSH),malondialdehyde (MDA) and superoxide dismutase (SOD) activity were detected by biochemical method. Epididymal and testicular indices were measured. The spermatogenic function of testes was evaluated by eosin-hematoxylin staining. Sperm quality was detected by an automatic animal sperm analyzer. Prussian blue staining was used to detect iron deposition in testicular tissue. Immunohistochemistry was used to detect the related protein expressions of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4) in testicular tissue. Western blotting was used to detect the related protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1)/GPX4 signaling pathway in testicular tissue. Results Compared with the normal group,the contents of serum UA,MDA,and Fe2+in the testis tissue of the model group were increased,the GSH content and SOD activity were decreased,the epididymal and testicular index,testicular spermatogenic function,sperm density and activity rate were decreased,and the iron deposition and ACSL4 protein expression in the testis tissue were increased. The expressions of kelch-like ECH-associated protein-1 (Keap1) and Nrf2 were increased. The expressions of nuclear Nrf2,HO-1,GPX4,and recombinant solute carrier family 7 member 11 (SLC7A11) protein were decreased (P<0.01). Compared with the model group,the above indexes in the Shenling Baizhu Powder groups and the Fer-1 group were improved to varying degrees (P<0.05,P<0.01). Conclusion Shenling Baizhu Powder can inhibit the ferroptosis of testicular cells through the Nrf2/HO-1/GPX4 signaling pathway,and improve the testicular spermatogenic function of mice with hyperuricemia spermatogenic dysfunction.
6.Expression and in vitro activity of a neutralizing antibody against West Nile virus that reduces antibody-dependent enhancement
Xiangjun HAO ; Nan CHEN ; Wanlu ZHU ; Jing WANG ; Guojiang CHEN ; Chunxia QIAO ; Xinying LI ; Beifen SHEN ; Jiannan FENG ; Lihui CHAI ; He XIAO
Chinese Journal of Microbiology and Immunology 2024;44(1):44-49
Objective:To establish an antibody expression system to reduce the antibody-dependent enhancement (ADE) effect of target antibody.Methods:Site-directed mutagenesis was used to mutate the 234 and 235 sites of the Fc region of the mammalian cell antibody expression vector-L234A and L235A to establish the antibody expression vector pFRT-IgG1κ-FcM. An antibody Wt-WNV with significant ADE effect obtained in previous work was selected and expressed by the pFRT-IgG1κ-FcM system to obtain mutant antibody FcM-WNV. The binding ability of FcM-WNV to target antigen West Nile virus envelope protein-DⅢ (WNV E-DⅢ) was detected by ELISA, and the its binding ability to human high-affinity IgG Fc receptor hFcγRⅠ (hCD64 ) was analyzed by flow cytometry. The neutralizing activity of FcM-WNV in vitro was detected by pseudovirus infection of host cells (BHK21 and K562). Results:The expression levels of FcM-WNV and Wt-WNV were comparable, and FcM-WNV could recognize and bind to WNVE-DIII in a concentration-dependent manner. Compared with Wt-WNV, the binding ability of FcM-WNV to hCD64 was significantly weakened, showing a significant decrease in fluorescence intensity. Consistent with the previous experimental results, Wt-WNV at a concentration of 5 μg/ml significantly enhanced the infection of K562 by WNV pseudovirus, while FcM-WNV at a concentration of 5 μg/ml could effectively block pseudovirus infection in both K562 and BHK21 cells.Conclusions:The established antibody expression system can effectively reduce the ADE effect of the target antibody.
7.Pyroptosis-related genes defines the progression and im-mune tolerance microenvironment of hepatocellular carcino-ma
Xiao-Dong HAO ; Yi-Dan REN ; Mao-Xiao FENG ; Yun-Shan WANG
Chinese Journal of Current Advances in General Surgery 2024;27(2):98-104
Objective:To explore the expression pattern of pyroptosis-related genes(PRGs)in hepatocellular carcinoma(HCC),and analyze the relationship between its expression and tumor prog-nosis and immune microenvironment.Methods:TCGA database was used to analyze the genetic changes and expression patterns of PRGs in primary HCC cells,and cluster analysis was used to i-dentify the pyrogenic subtypes of HCC.To compare the difference of prognosis and immune mi-croenvironment among HCC pyrodeath subtypes.Scorch death score quantified the comprehensive expression of PRGs in each sample,and analyzed the correlation between scorch death score and each immune score.Results:Two pyroptosis-associated subtypes of primary HCC were identi-fied,and the expression pattern of PRGs is closely related to the prognosis of cancer patients and the tumor microenvironment.The subtype with high expression of PRGs had a poor prognosis,and functional enrichment analysis found that some tumor-promoting pathways and PD-1 checkpoint pathways were significantly enriched in this subtype.And various cells and immune checkpoints re-lated to immunosuppression were also enriched in this subtype.By constructing PYROPTO-SIS_score to quantify the comprehensive expression of pyroptosis-related genes in each sample,it was found that PYROPTOSIS_score was significantly positively correlated with tumor-infiltrating macrophages,myeloid-derived suppressor cells,and Treg cells.Conclusion:These results sug-gest that pyroptosis may play a tumor-promoting as well as immunosuppressive role in HCC,pro-viding new insights into the assessment of tumor patient prognosis and the immune microenviron-ment.
8.Targeting cAMP in D1-MSNs in the nucleus accumbens, a new rapid antidepressant strategy.
Yue ZHANG ; Jingwen GAO ; Na LI ; Peng XU ; Shimeng QU ; Jinqian CHENG ; Mingrui WANG ; Xueru LI ; Yaheng SONG ; Fan XIAO ; Xinyu YANG ; Jihong LIU ; Hao HONG ; Ronghao MU ; Xiaotian LI ; Youmei WANG ; Hui XU ; Yuan XIE ; Tianming GAO ; Guangji WANG ; Jiye AA
Acta Pharmaceutica Sinica B 2024;14(2):667-681
Studies have suggested that the nucleus accumbens (NAc) is implicated in the pathophysiology of major depression; however, the regulatory strategy that targets the NAc to achieve an exclusive and outstanding anti-depression benefit has not been elucidated. Here, we identified a specific reduction of cyclic adenosine monophosphate (cAMP) in the subset of dopamine D1 receptor medium spiny neurons (D1-MSNs) in the NAc that promoted stress susceptibility, while the stimulation of cAMP production in NAc D1-MSNs efficiently rescued depression-like behaviors. Ketamine treatment enhanced cAMP both in D1-MSNs and dopamine D2 receptor medium spiny neurons (D2-MSNs) of depressed mice, however, the rapid antidepressant effect of ketamine solely depended on elevating cAMP in NAc D1-MSNs. We discovered that a higher dose of crocin markedly increased cAMP in the NAc and consistently relieved depression 24 h after oral administration, but not a lower dose. The fast onset property of crocin was verified through multicenter studies. Moreover, crocin specifically targeted at D1-MSN cAMP signaling in the NAc to relieve depression and had no effect on D2-MSN. These findings characterize a new strategy to achieve an exclusive and outstanding anti-depression benefit by elevating cAMP in D1-MSNs in the NAc, and provide a potential rapid antidepressant drug candidate, crocin.
9.Immunotherapy for Colorectal Cancer
Hao-Ran XU ; Xiao-Yi ZHAO ; He NIE ; Hui WANG ; Qing-Lin ZHANG ; Qiang ZHAN
Progress in Biochemistry and Biophysics 2024;51(10):2570-2586
Improving the prognosis of patients with colorectal cancer (CRC) holds important clinical and social significance. Immunotherapy is an emerging therapy approach for cancers, which mainly include immune checkpoint inhibitors (ICI), immune vaccine and adoptive cell therapy. ICI have achieved good clinical translation in treatment of metastatic CRC with deficient DNA mismatch repair/high microsatellite instability (dMMR/MSI-H) status. The application of some ICI, such as PD-1 inhibitors pembrolizumab and nivolumab, in this type patients have been approved by the FDA. In addition,numerous positive results are acquired in clinical trials of neoadjuvant therapy for resectable dMMR/MSI-H CRC. These results greatly bolstered the exploration enthusiasm of CRC immunotherapy. However, the proficient DNA mismatch repair/microsatellite stability (pMMR/MSS) CRC, which accounting for the vast majority in related patients, hardly benefit from ICI therapy. Various combination strategies, mainly including ICI combined with traditional chemotherapy, radiotherapy, or targeted therapy, have been attempted to alter the “cold tumors” microenvironment characteristics of pMMR/MSS CRC in clinical trials, whereas no breakthrough results were reached. Theoretically, tumor vaccines are ideal choice to break down the barrier of insufficient immune infiltration in solid tumors. However, the outcomes of related clinical trials in CRC patents are not satisfactory, and partially due to the weak specificity of the applied tumor-associated antigens. Clinical studies of adoptive cell therapy in CRC are also actively underway. The favorable efficacy of tumor-infiltrating lymphocyte, cytokine-induced killer (CIK) and dendritic cell-CIK in CRC have been confirmed, while the CAR-T and TCR-T therapies need more exploration based on screening more suitable antigens and optimizing engineering design. In this review, we made a summary based on the mainline of clinical studies related to diverse immunotherapies, so as to clarify the progress of CRC immunotherapy and provide bases for exploration of better treatment options.
10.A new biphenyl lignan from Cornus officinalis
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Shi-qi ZHOU ; Chao-yuan XIAO ; Jun-yang ZHANG ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2024;59(6):1751-1756
Macroporous adsorption resin, MCI, Toyopearl HW-40C and silica gel column chromatography combined with the semi-preparative HPLC were used to isolate and purify the water extract of

Result Analysis
Print
Save
E-mail