1.The mechanism of Laggerae Herba in improving chronic heart failure by inhibiting ferroptosis through the Nrf2/SLC7A11/GPX4 signaling pathway
Jinling XIAO ; Kai HUANG ; Xiaoqi WEI ; Xinyi FAN ; Wangjing CHAI ; Jing HAN ; Kuo GAO ; Xue YU ; Fanghe LI ; Shuzhen GUO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):343-353
Objective:
To investigate the role and mechanism of the heat-clearing and detoxifying drug Laggerae Herba in regulating the nuclear factor-erythroid 2-related factor-2(Nrf2)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway to inhibit ferroptosis and improve chronic heart failure induced by transverse aortic arch constriction in mice.
Methods:
Twenty-four male ICR mice were divided into the sham (n=6) and transverse aortic arch constriction groups (n=18) according to the random number table method. The transverse aortic arch constriction group underwent transverse aortic constriction surgery to establish models. After modeling, the transverse aortic arch constriction group was further divided into the model, captopril, and Laggerae Herba groups according to the random number table method, with six mice per group. The captopril (15 mg/kg) and Laggerae Herba groups (1.95 g/kg) received the corresponding drugs by gavage, whereas the sham operation and model groups were administered the same volume of ultrapure water by gavage once a day for four consecutive weeks. After treatment, the cardiac function indexes of mice in each group were detected using ultrasound. The heart mass and tibia length were measured to calculate the ratio of heart weight to tibia length. Hematoxylin and eosin staining were used to observe the pathological changes in myocardial tissue. Masson staining was used to observe the degree of myocardial fibrosis. Wheat germ agglutinin staining was used to observe the degree of myocardial cell hypertrophy. Prussian blue staining was used to observe the iron deposition in myocardial tissue. An enzyme-linked immunosorbent assay was used to detect the amino-terminal pro-brain natriuretic peptide (NT-proBNP) and glutathione (GSH) contents in mice serum. Colorimetry was used to detect the malondialdehyde (MDA) content in mice serum. Western blotting was used to detect the Nrf2, GPX4, SLC7A11, and ferritin heavy chain 1 (FTH1) protein expressions in mice cardiac tissue.
Results:
Compared with the sham group, in the model group, the ejection fraction (EF) and fractional shortening (FS) of mice decreased, the left ventricular end-systolic volume (LVESV) and left ventricular end-systolic diameter (LVESD) increased, the left ventricular anterior wall end-systolic thickness (LVAWs) and left ventricular posterior wall end-systolic thickness (LVPWs) decreased, the ratio of heart weight to tibia length increased, the myocardial tissue morphology changed, myocardial fibrosis increased, the cross-sectional area of myocardial cells increased, iron deposition appeared in myocardial tissue, the serum NT-proBNP and MDA levels increased, the GSH level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue decreased (P<0.05). Compared with the model group, in the captopril and Laggerae Herba groups, the EF, FS, and LVAWs increased, the LVESV and LVESD decreased, the ratio of heart weight to tibia length decreased, the myocardial cells were arranged neatly, the degree of myocardial fibrosis decreased, the cross-sectional area of myocardial cells decreased, the serum NT-proBNP level decreased, and the GSH level increased. Compared with the model group, the LVPWs increased, the iron deposition in myocardial tissue decreased, the serum MDA level decreased, and Nrf2, GPX4, SLC7A11, and FTH1 protein expressions in cardiac tissue increased (P<0.05) in the Laggerae Herba group.
Conclusion
Laggerae Herba improves the cardiac function of mice with chronic heart failure caused by transverse aortic arch constriction, reduces the pathological remodeling of the heart, and reduces fibrosis. Its mechanism may be related to Nrf2/SLC7A11/GPX4 pathway-mediated ferroptosis.
2.Application of dual fluorescence laparoscopy in the repair of complex ureteral stricture with lingual mucosa graft
Yuancheng ZHOU ; Chaoqi LIANG ; Shuaishuai CHAI ; Ruoyu LI ; Nana LI ; Zhaotai GU ; Xingyuan XIAO ; Bing LI
Journal of Modern Urology 2025;30(3):227-231
Objective: To evaluate the feasibility and effectiveness of dual fluorescence laparoscopy in the localization of ureteral stricture and its blood supply,and to provide a new idea for the treatment of complex ureteral stenosis,thus helping doctors to improve the efficiency of ureteral reconstruction surgery. Methods: Our team developed a dual fluorescence laparoscopic system,which could simultaneously identify the ureter stricture by intra-ureteral injection of methylene blue (MB) and assess the blood supply of the ureteral stumps by intravenous injection of indocyanine green (ICG). Results: The clinical data of 3 patients who underwent lingual mucosa ureteroplasty using dual fluorescence laparoscopy in Zhongnan Hospital of Wuhan University were retrospectively analyzed.All operations were successful,without conversion to open surgery.The operation time was 144,132 and 163 minutes,respectively.The length of harvested lingual mucosa graft was 2.0,2.8 and 3.5 cm,respectively.No intraoperative or postoperative complications occurred.Eight weeks after operation,ureterography showed that the ureter was unobstructed. Conclusion: Dual fluorescence laparoscopy is safe and feasible in the repair of complex ureteral stricture with lingual mucosa graft,which provides a new idea for complex ureteral reconstruction.
3.Establishment and evaluation of an animal model of heart failure with preserved ejection fraction integrating disease and syndrome based on the "deficiency-blood stasis-toxin" pathogenesis
Xiaoqi WEI ; Xinyi FAN ; Feng JIANG ; Wangjing CHAI ; Jinling XIAO ; Fanghe LI ; Kuo GAO ; Xue YU ; Wei WANG ; Shuzhen GUO
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):501-515
Objective:
This study aimed to construct an animal model of heart failure with preserved ejection fraction (HFpEF) that integrates disease and syndrome based on the "deficiency-blood stasis-toxin" pathogenesis and to evaluate it comprehensively.
Methods:
The HFpEF mouse model was constructed using a combination of Nω-nitro-L-arginine methyl ester (L-NAME) and a high-fat diet. According to the random number table method, SPF-grade male C57BL/6J mice were randomly assigned to the control, L-NAME, high-fat diet, and model groups, 10 in each group. Comprehensive observations and data collection on macroscopic signs (e.g., fur condition, mental state, stool and urine, oral and nasal condition, paw and body condition, etc.) and cardiac function were performed after 10 and 16 weeks of model induction. Additionally, the syndrome evolution was elucidated based on diagnostic criteria for clinical syndromes of heart failure. Furthermore, pathological and molecular biological examinations of myocardial tissue were performed to assess the stability and reliability of the model.
Results:
Mice in the model group showed typical characteristics of syndrome of qi deficiency and blood stasis, as well as syndrome of internal heat accumulation, including lethargy, slow response, dull paw color and oral/nasal color, exercise intolerance, abnormal platelet activation, dry feces, and dark yellow urine. The time window for these syndromes was between 10 and 16 weeks post-modeling. Cardiac function assessments revealed severe diastolic dysfunction, concentric myocardial hypertrophy, and myocardial fibrosis in the model group. Pathological examinations showed a significantly increased collagen deposition in the myocardial interstitium, enlarged cross-sectional area of cardiomyocytes, and sparse coronary microvasculature in the model group. Molecular biological analyses indicated marked activation of the inducible nitric oxide synthase/nuclear factor kappa-light-chain-enhancer of activated B cells/NOD-like receptor family pyrin domain containing 3 inflammatory pathway and significantly elevated inflammation levels in the myocardial tissue of the model group. Although mice in the L-NAME and high-fat diet groups also showed certain manifestations of qi deficiency syndrome, the substantial cardiac damage was relatively limited compared to the control group.
Conclusion
This study has constructed an animal model of HFpEF that integrates disease and syndrome based on the "deficiency-blood stasis-toxin" pathogenesis. The macroscopic and microscopic characteristics of this model are consistent with the manifestations of syndrome of qi deficiency and blood stasis, toxin syndrome, and syndrome of internal heat accumulation. Moreover, it can stably simulate the HFpEF state and reflect phenotypic changes in human disease. This model provides a suitable experimental platform to explore the pathogenesis of HFpEF, evaluate the effectiveness of traditional Chinese medicine (TCM) treatment regimens, and promote in-depth research on TCM syndromes of heart failure.
4.Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia.
Kun GAO ; Chang-Xin LIU ; Jia-Qi CHEN ; Jing-Jing SUN ; Xiao-Juan LI ; Zhi-Qiang HUANG ; Ye ZHANG ; Pei-Feng XUE ; Su-Yi-le CHEN ; Xin DONG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(8):2080-2089
Syringa pinnatifolia, belonging to the family Oleaceae, is a species endemic to China. It is predominantly distributed in the Helan Mountains region of Inner Mongolia and Ningxia of China. The peeled roots, stems, and thick branches have been used as a distinctive Mongolian medicinal material known as "Shan-chen-xiang", which has effects such as suppressing "khii", clearing heat, and relieving pain and is employed for the treatment of cardiovascular and pulmonary diseases and joint pain. Over the past five years, significant increase was achieved in research on chemical constituents and pharmacological effects. There were a total of 130 new constituents reported, covering sesquiterpenoids, lignans, and alkaloids. Its effects of anti-myocardial ischemia, anti-cerebral ischemia/reperfusion, sedation, and analgesia were revealed, and the mechanisms of agarwood formation were also investigated. To better understand its medical value and potential of clinical application, this review updates the research progress in recent five years focusing on the chemical constituents and pharmacological effects of S. pinnatifolia, providing reference for subsequent research on active ingredient and support for its innovative application in modern medicine system.
Medicine, Mongolian Traditional
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Syringa/chemistry*
5.Mechanism of Jiming Powder in improving mitophagy for treatment of myocardial infarction based on PINK1-Parkin pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Kuo GAO ; Fang-He LI ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(12):3346-3355
In the present study, a mouse model of coronary artery ligation was employed to evaluate the effects of Jiming Powder on mitophagy in the mouse model of myocardial infarction and elucidate its underlying mechanisms. A mouse model of myocardial infarction post heart failure was constructed by ligating the left anterior descending branch of the coronary artery. The therapeutic efficacy of Jiming Powder was assessed from multiple perspectives, including ultrasonographic imaging, hematoxylin-eosin(HE) staining, Masson staining, and serum cardiac enzyme profiling. Dihydroethidium(DHE) staining was employed to evaluate the oxidative stress levels in the hearts of mice from each group. Mitophagy levels were assessed by scanning electron microscopy and immunofluorescence co-localization. Western blot was employed to determine the levels of key proteins involved in mitophagy, including Bcl-2-interacting protein beclin 1(BECN1), sequestosome 1(SQSTM1), microtubule-associated protein 1 light chain 3 beta(LC3B), PTEN-induced putative kinase 1(PINK1), phospho-Parkinson disease protein(p-Parkin), and Parkinson disease protein(Parkin). The results demonstrated that compared with the model group, high and low doses of Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd) and markedly improved the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improving the cardiac function in post-myocardial infarction mice. Jiming Powder effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactate dehydrogenase(LDH), thereby protecting ischemic myocardium. HE staining revealed that Jiming Powder attenuated inflammatory cell infiltration after myocardial infarction. Masson staining indicated that Jiming Powder effectively inhibited ventricular remodeling. Western blot results showed that Jiming Powder activated the PINK1-Parkin pathway, up-regulated the protein level of BECN1, down-regulated the protein level of SQSTM1, and increased the LC3Ⅱ/LC3Ⅰ ratio to promote mitophagy. In conclusion, Jiming Powder exerts therapeutic effects on myocardial infarction by inhibiting ventricular remodeling. The findings pave the way for subsequent pharmacological studies on the active components of Jiming Powder.
Animals
;
Myocardial Infarction/physiopathology*
;
Mitophagy/drug effects*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Protein Kinases/genetics*
;
Male
;
Ubiquitin-Protein Ligases/genetics*
;
Humans
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
6.Advance on clinical and pharmacological research of Bawei Chenxiang Powder and related formulae.
Lu-Lu KANG ; Jia-Tong WANG ; Feng ZHOU ; Guo-Dong YANG ; Xiao-Juan LI ; Xiao-Li GAO ; Luobu GESANG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(10):2875-2882
Bawei Chenxiang Powder(BCP), first documented in the Tibetan medical work Four Medical Classics, has been widely applied in clinical practices in Tibetan and Mongolian medicines since its development. It has the effect of clearing the heart heat, calming the mind, and inducing resuscitation. On the basis of BCP, multiple types of formulae have been developed, such as Bawei Yiheyi Chenxiang Powder, Bawei Rang Chenxiang Powder, and Bawei Pingchuan Chenxiang Powder, which are widely used for treating cardiovascular and respiratory diseases. Current pharmacological research has revealed the pharmacological effects of BCP and its related formulae against myocardial ischemia, cerebral ischemia, renal ischemia, and anti-hypoxia. BCP and its related formulae introduced more treatment options for related clinical diseases and provided insights for fully comprehending the essence and pharmacological components of the formulae. This paper systematically reviewed the clinical and pharmacological research on BCP and its related formulae, analyzing the formulation principles and potential key flavors and active ingredients. This lays a fundamental scientific basis for the clinical use, quality evaluation, and subsequent development and application of BCP and its related formulae, providing references for studying traditional Chinese medicine formulae in a thorough and systematic manner.
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Powders/chemistry*
;
Animals
;
Medicine, Chinese Traditional
7.Studies on pharmacological effects and chemical components of different extracts from Bawei Chenxiang Pills.
Jia-Tong WANG ; Lu-Lu KANG ; Feng ZHOU ; Luo-Bu GESANG ; Ya-Na LIANG ; Guo-Dong YANG ; Xiao-Li GAO ; Hui-Chao WU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(11):3035-3042
The medicinal materials of Bawei Chenxiang Pills(BCPs) were extracted via three methods: reflux extraction by water, reflux extraction by 70% ethanol, and extraction by pure water following reflux extraction by 70% ethanol, yielding three extracts of ST, CT, and CST. The efficacy of ST(760 mg·kg~(-1)), CT(620 mg·kg~(-1)), and CST(1 040 mg·kg~(-1)) were evaluated by acute myocardial ischemia(AMI) and p-chlorophenylalanine(PCPA)-induced insomnia in mice, respectively. Western blot was further utilized to investigate their hypnosis mechanisms. The main chemical components of different extracts were identified by the UPLC-Q-Exactive-MS technique. The results showed that CT and CST significantly increased the ejection fraction(EF) and fractional shortening(FS) of myocardial infarction mice, reduced left ventricular internal dimension at end-diastole(LVIDd) and left ventricular internal dimension at end-systole(LVIDs). In contrast, ST did not exhibit significant effects on these parameters. In the insomnia model, CT significantly reduced sleep latency and prolonged sleep duration, whereas ST only prolonged sleep duration without shortening sleep latency. CST showed no significant effects on either sleep latency or sleep duration. Additionally, both CT and ST upregulated glutamic acid decarboxylase 67(GAD67) protein expression in brain tissue. A total of 15 main chemical components were identified from CT, including 2-(2-phenylethyl) chromone and 6-methoxy-2-(2-phenylethyl) chromone. Six chemical components including chebulidic acid were identified from ST. The results suggested that chromones and terpenes were potential anti-myocardial ischemia drugs of BCPs, and tannin and phenolic acids were potential hypnosis drugs. This study enriches the pharmacological and chemical research of BCPs, providing a basis and reference for their secondary development, quality standard improvement, and clinical application.
Animals
;
Drugs, Chinese Herbal/isolation & purification*
;
Mice
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Humans
;
Myocardial Infarction/drug therapy*
;
Myocardial Ischemia/drug therapy*
8.Mechanism of Jiming Powder in inhibiting ferroptosis in treatment of myocardial infarction based on NRF2/HO-1/GPX4 pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Fang-He LI ; Kuo GAO ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(11):3108-3116
This study employed a mouse model of coronary artery ligation to assess the effect and mechanism of Jiming Powder on mitochondrial autophagy in mice with myocardial infarction. The mouse model of heart failure post-myocardial infarction was established by ligating the left anterior descending coronary artery. The pharmacological efficacy of Jiming Powder was evaluated through echocardiographic imaging, hematoxylin-eosin(HE) staining, and Masson staining. The levels of malondialdehyde(MDA), Fe~(2+), reduced glutathione(GSH), and superoxide dismutase(SOD) in heart tissues, as well as MDA immunofluorescence of heart tissues, were measured to assess lipid peroxidation and Fe~(2+) levels in the hearts of mice in different groups. Ferroptosis levels in the groups were evaluated using scanning electron microscopy and Prussian blue staining. Western blot analysis was conducted to detect the levels of key ferroptosis-related proteins, including nuclear factor erythroid 2-related factor 2(NRF2), ferritin heavy chain(FTH), glutathione peroxidase 4(GPX4), solute carrier family 7 member 11(SLC7A11), heme oxygenase 1(HO-1), and Kelch-like ECH-associated protein 1(KEAP1). The results showed that compared with the model group, both the high-and low-dose Jiming Powder groups exhibited significantly reduced left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd), while the left ventricular ejection fraction(EF) and left ventricular fractional shortening(FS) were significantly improved, effectively enhancing cardiac function in mice post-myocardial infarction. HE staining revealed that Jiming Powder attenuated myocardial inflammatory cell infiltration post-infarction, and Masson staining indicated that Jiming Powder effectively reduced fibrosis in the infarct margin area. Treatment with Jiming Powder reduced the levels of MDA and Fe~(2+), indicators of lipid peroxidation post-myocardial infarction, while increasing GSH and SOD levels, thus protecting ischemic myocardium. Western blot results demonstrated that Jiming Powder reduced KEAP1 protein accumulation, activated the NRF2/HO-1/GPX4 pathway, and up-regulated the protein expression of FTH and SLC7A11, exerting an inhibitory effect on ferroptosis. This study reveals that Jiming Powder exerts a therapeutic effect on myocardial infarction by inhibiting ferroptosis through the NRF2/HO-1/GPX4 pathway, providing a foundation for subsequent research on the pharmacological effects of Jiming Powder.
Animals
;
Ferroptosis/drug effects*
;
Myocardial Infarction/physiopathology*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Heme Oxygenase-1/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Disease Models, Animal
9.Role of antibiotic eluting absorbable calcium sulfate in phaseⅠrevision treatment of periprosthetic knee infection.
Xiao-Bo CHEN ; Shuai-Lei LI ; Ai-Bin LIU ; Hao CHAI ; Yong-Qiang SUN
China Journal of Orthopaedics and Traumatology 2025;38(6):580-586
OBJECTIVE:
To explore the role of antibiotic-eluting absorbable calcium sulfate in treating periprosthetic infection after one-stage revision of knee arthroplasty.
METHODS:
A retrospective analysis was performed on 36 patients(36 knees)who underwent phaseⅠrevision for periprosthesis infection after total knee arthroplasty from January 2018 to March 2022. All patients were underwent knee cavity puncture before operation and had positive results of aseptic body fluid culture, 21 patients received revision combined with antibiotic loaded calcium sulfate at stageⅠ(calcium sulfate group) during operation, and 15 patients underwent renovation at stageⅠ(revision group). There were 9 males and 12 females in calcium sulfate group, aged from 54 to 76 years old with an average of(67.6±6.2) years old. There were 15 patients in revision group, including 4 males and 11 females, aged from 60 to 75 years old with average of (69.6±4.1) years old. The levels of serum C-reactive protein (CRP), interleukin-6 (IL-6) at 7, 14, 30 and 90 days after operation were compared between two groups, and the rate of end-infection control at follow-up were compared. The systemic antibiotic application time, hospital stay and postoperative complications were observed between two groups.
RESULTS:
Calcium sulfate group were followed up for 12 to 29 months with an average of(18.9±4.2) months, and the infection control rate was 90.5%;while revision group were followed up 18 to 29 months with average of (21.6±3.7) months, and the infection control rate was 86.7% (13/15). There were no significant differences in follow-up time and infection control rate between two groups(P>0.05). Postoperative levels of CRP and IL-6 at 7, 14 and 30 days in calcium sulfate group were (32.79±11.48), (15.50±6.52), (9.36±3.32) mg·L-1 and (17.31±6.15) pg·ml-1, respectively;which were lower than those in revision group (40.65±11.32), (30.15±10.57), (18.97±5.86) mg·L-1 and (25.54±6.73) pg·ml-1, had statistical differences(P<0.05). There were no significant differences in IL-6 levels at 7 and 14 days after operation and CRP levels at 90 days after operation between two groups (P>0.05). The hospitalization time and systemic antibiotic application time in calcium sulfate group were (18.4±2.2) and (63.5±21.4) d, respectively;which were better than those in revision group (20.5±2.4) and (82.7±16.9) d, and had statistical differences(P<0.05). No significant wound complications and hypercalcemia were observed in calcium sulfate group.
CONCLUSION
Antibiotic eluted absorbable calcium sulfate could be used to treat periprosthetic knee infection, significantly reducing CRP levels in the early postoperative period, shortening hospital stay and systemic antibiotic application time, but it does not significantly improve the control rate of revision infection at stageⅠ.
Humans
;
Male
;
Female
;
Aged
;
Prosthesis-Related Infections/surgery*
;
Middle Aged
;
Calcium Sulfate/administration & dosage*
;
Arthroplasty, Replacement, Knee/adverse effects*
;
Retrospective Studies
;
Anti-Bacterial Agents/therapeutic use*
;
Interleukin-6/blood*
;
C-Reactive Protein/metabolism*
;
Reoperation
;
Knee Prosthesis/adverse effects*
10.Correlation between Expression Levels of Tim-3, C-myc and Proportion of T Lymphocyte Subsets and Prognosis in Patients with Acute Lymphoblastic Leukemia.
Yu-Chai ZHONG ; Ke-Ding HU ; Yi-Rong JIANG ; Xiao-Wen HUANG
Journal of Experimental Hematology 2025;33(5):1299-1304
OBJECTIVE:
To analyze the correlation between the expression levels of Tim-3, C-myc and the proportion of T lymphocyte subsets and prognosis in patients with acute lymphoblastic leukemia (ALL).
METHODS:
The research group selected 60 ALL patients admitted to our hospital from December 2019 to December 2021, while the control group selected 55 healthy volunteers who underwent physical examination in our hospital. The expression levels of Tim-3, C-myc mRNA and the proportion of T lymphocyte subsets in the two groups were detected. The mortality rate of ALL patients was calculated, and the correlation between the expression levels of Tim-3, C-myc, and the proportion of T lymphocyte subsets and pathological features and prognosis was analyzed.
RESULTS:
Compared with the control group, the levels of Tim-3, C-myc and CD8+ in the research group were increased, while the levels of CD3+ , CD4+ and CD4+ /CD8+ were decreased (all P < 0.001). The levels of Tim-3, C-myc mRNA, CD3+ , CD4+ , CD8+ , CD4+ /CD8+ were correlated with risk classification and extramedullary infiltration (all P < 0.05). The survival rate of patients with low expression of Tim-3, C-myc, and CD8+ was higher than that of patients with high expression, while the survival rate of patients with high expression of CD3+ , CD4+ , and CD4+ /CD8+ was higher than that of patients with low expression (all P < 0.05). Univariate analysis showed that the deceased patients had higher proportions of extramedullary infiltration and high-risk classification, as well as higher levels of Tim-3, C-myc, and CD8+ , while lower levels of CD3+ , CD4+ , and CD4+ /CD8+ compared with surviving patients (all P < 0.01). Multivariate logistic regression analysis showed that extramedullary invasion, risk classification, Tim-3, C-myc, CD3+ , CD4+ , CD8+ , CD4+ /CD8+ were the main factors affecting the prognosis of ALL patients (all P < 0.05). ROC curve analysis showed that the combination of Tim-3, C-myc, and T lymphocyte subsets had higher sensitivity and accuracy in predicting prognosis of ALL patients compared with the single diagnosis of Tim-3, C-myc, CD3+ , CD4+ , CD8+ , and CD4+ /CD8+ (P < 0.05).
CONCLUSION
ALL patients show higher levels of Tim-3, C-myc mRNA and CD8+ but lower levels of CD3+ , CD4+ and CD4+/CD8+. Moreover, the expression levels of Tim-3, C-myc, CD3+ , CD4+ , CD8+ and CD4+/CD8+ are correlated with extramedullary invasion, high-risk classification and prognosis.
Humans
;
Hepatitis A Virus Cellular Receptor 2/metabolism*
;
Prognosis
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis*
;
T-Lymphocyte Subsets
;
Male
;
Female
;
Adult
;
Middle Aged
;
Adolescent
;
RNA, Messenger


Result Analysis
Print
Save
E-mail