1.Establishment and evaluation of pendulum-like modified rat abdominal heart heterotopic transplantation model
Hongtao TANG ; Caihan LI ; Xiangyun ZHENG ; Senlin HOU ; Weiyang CHEN ; Zengwei YU ; Yabo WANG ; Dong TIAN ; Qi AN
Organ Transplantation 2025;16(2):280-287
Objective To introduce the modeling method of pendulum-like modified rat abdominal heart heterotopic transplantation model and evaluate the quality of the model. Methods An operator without transplantation experience performed 15 consecutive models, recorded the time of each step, changes in body weight and modified Stanford scores, and calculated the surgical success rate, postoperative 1-week survival rate and technical success rate. Ultrasound examinations was performed in 1 week postoperatively. Results The times for donor heart acquisition, donor heart processing, recipient preparation and transplantation anastomosis were (14.3±1.4) min, (3.5±0.6) min, (13.6±2.1) min and (38.3±5.2) min respectively. The surgical success rate was 87% (13/15), and the survival rate 1 week after operative was 100% (13/13). The improved Stanford score indicated a technical success rate of 92% (12/13), and the postoperative 1-week ultrasound examination showed that grafts with Stanford scores ≥3 had detectable pulsation and blood flow signals. Conclusions The pendulum-like modified rat abdominal heart heterotopic transplantation improved model further optimizes the operational steps with a high success rate and stable quality, may be chosen as a modeling option for basic research in heart transplantation in the future.
2.Renshentang Alleviates Atherosclerosis in Mice by Targeting TRPV1 to Regulate Foam Cell Cholesterol Metabolism
Yulu YUAN ; Ce CHU ; Xuguang TAO ; Zhen YANG ; Xiangyun CHEN ; Zhanzhan HE ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Wanping CHEN ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):11-19
ObjectiveTo explore the effects of Renshentang on atherosclerosis (AS) in mice based on the role of transient receptor potential vanilloid1 (TRPV1) in regulating cholesterol metabolism in foam cells. MethodsNine SPF-grade 8-week-old C57BL/6J mice were set as a normal group, and 60 ApoE-/- mice were randomized into model, positive drug (simvastatin, 0.02 g·kg-1·d-1), and low-, medium-, and high-dose (1.77, 3.54, 7.08 g·kg-1·d-1, respectively) Renshentang groups (n=12) according to body weight. The normal group was fed with a normal diet, and the other groups were fed with a high-fat diet and given corresponding drugs by oral gavage for the modeling of AS. The mice were administrated with corresponding drugs once a day for 12 weeks. After the last administration and fasting for 12 h, the aorta was collected. Plaque conditions, pathological changes, levels of total cholesterol (TC), triglcerides (TG), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol (HDL-C), and the expression of TRPV1, liver X receptor (LXR), inducible degrader of the low-density lipoprotein receptor (IDOL), and low-density lipoprotein receptor (LDLR) in the aortic tissue were observed and detected by gross oil red O staining, HE staining, Western blot, immunohistochemistry, and real-time PCR. ResultsCompared with the normal group, the model group presented obvious plaque deposition in the aorta, raised levels of TC, TG, and LDL-C in the serum (P<0.01), up-regulated expression level of LDLR in the aorta (P<0.01), lowered level of HDL-C in the serum, and down-regulated expression levels of TRPV1, LXR, and IDOL in the aorta (P<0.05, P<0.01). Compared with the model group, the positive drug and Renshentang at different doses alleviated AS, elevated the levels of HDL-C, TRPV1, LXR, and IDOL (P<0.05, P<0.01), while lowering the levels of TC, TG, LDL-C, and LDLR (P<0.05, P<0.01). ConclusionRenshentang has a lipid-lowering effect on AS mice. It can effectively reduce lipid deposition, lipid levels, and plaque area of AS mice by activating TRPV1 expression and regulating the LXR/IDOL/LDLR pathway.
3.Renshentang Alleviates Atherosclerosis in Mice by Targeting TRPV1 to Regulate Foam Cell Cholesterol Metabolism
Yulu YUAN ; Ce CHU ; Xuguang TAO ; Zhen YANG ; Xiangyun CHEN ; Zhanzhan HE ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Wanping CHEN ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):11-19
ObjectiveTo explore the effects of Renshentang on atherosclerosis (AS) in mice based on the role of transient receptor potential vanilloid1 (TRPV1) in regulating cholesterol metabolism in foam cells. MethodsNine SPF-grade 8-week-old C57BL/6J mice were set as a normal group, and 60 ApoE-/- mice were randomized into model, positive drug (simvastatin, 0.02 g·kg-1·d-1), and low-, medium-, and high-dose (1.77, 3.54, 7.08 g·kg-1·d-1, respectively) Renshentang groups (n=12) according to body weight. The normal group was fed with a normal diet, and the other groups were fed with a high-fat diet and given corresponding drugs by oral gavage for the modeling of AS. The mice were administrated with corresponding drugs once a day for 12 weeks. After the last administration and fasting for 12 h, the aorta was collected. Plaque conditions, pathological changes, levels of total cholesterol (TC), triglcerides (TG), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein-cholesterol (HDL-C), and the expression of TRPV1, liver X receptor (LXR), inducible degrader of the low-density lipoprotein receptor (IDOL), and low-density lipoprotein receptor (LDLR) in the aortic tissue were observed and detected by gross oil red O staining, HE staining, Western blot, immunohistochemistry, and real-time PCR. ResultsCompared with the normal group, the model group presented obvious plaque deposition in the aorta, raised levels of TC, TG, and LDL-C in the serum (P<0.01), up-regulated expression level of LDLR in the aorta (P<0.01), lowered level of HDL-C in the serum, and down-regulated expression levels of TRPV1, LXR, and IDOL in the aorta (P<0.05, P<0.01). Compared with the model group, the positive drug and Renshentang at different doses alleviated AS, elevated the levels of HDL-C, TRPV1, LXR, and IDOL (P<0.05, P<0.01), while lowering the levels of TC, TG, LDL-C, and LDLR (P<0.05, P<0.01). ConclusionRenshentang has a lipid-lowering effect on AS mice. It can effectively reduce lipid deposition, lipid levels, and plaque area of AS mice by activating TRPV1 expression and regulating the LXR/IDOL/LDLR pathway.
4.Trajectory planning and tracking control for upper limb traction rehabilitation training.
Shengguo LUO ; Xiangyun LI ; Qi LU ; Peng CHEN ; Kang LI
Journal of Biomedical Engineering 2025;42(2):318-325
To solve the safety problems caused by the restriction of interaction space and the singular configuration of rehabilitation robot in terminal traction upper limb rehabilitation training, a trajectory planning and tracking control scheme for rehabilitation training is proposed. The human-robot safe interaction space was obtained based on kinematics modeling and rehabilitation theory, and the training trajectory was planned based on the occupational therapy in rehabilitation medicine. The singular configuration of the rehabilitation robot in the interaction space was avoided by exponential adaptive damped least square method. Then, a nonlinear controller for the upper limb rehabilitation robot was designed based on the backstepping control method. Radial basis function neural network was used to approximate the robot model information online to achieve model-free control. The stability of the controller was proved by Lyapunov stability theory. Experimental results demonstrate the effectiveness and superiority of the proposed singular avoidance control scheme.
Humans
;
Upper Extremity
;
Robotics/methods*
;
Biomechanical Phenomena
;
Neural Networks, Computer
;
Traction/methods*
;
Algorithms
5.Changes of coagulation function and other indicators of the thawed FFP and FLP at 2-6℃
Jie PAN ; Xiangyun YAN ; Zhiyong LU ; Danhong WANG ; Qianqian CHEN ; Hongjie CHEN ; Yuting RUAN
Chinese Journal of Blood Transfusion 2024;37(9):1047-1051
【Objective】 To observe the changes of coagulation factor activity and protein content of the thawed fresh frozen plasma (FFP) and fresh liquid plasma (FLP) during storage at 2-6℃, and to provide reference for exploring the appropriate storage time of FFP at 2-6℃ after thawing. 【Methods】 The small-thaw group and the large-thaw group were respectively detected for the activity of coagulation factor FⅤ (FⅤ∶C) and FⅧ(FⅧ∶C), and the levels of fibrinogen (Fib), total protein (TP) and albumin (Alb) in TTP at 1, 2, 3, 4, 5, 6 and 7 days after thawing. And the FLP was detected for FⅤ∶C, FⅧ∶C, Fib, TP and Alb at 1, 2, 3, 4, 5, 6, 7 days and 1, 6, 11, 16, 21, 26 and 31 days after preparation, respectively. 【Results】 In FFP group, FⅧ∶C decreased gradually with the prolongation of storage time after melting (P<0.05), and decreased by 37.4% and 47.6% respectively in the two groups on the 7th day. There was no statistical difference in FⅤ∶C, Fib, TP and Alb (P>0.05). In FLP group, FⅧ∶C decreased gradually with the prolongation of storage time after melting (P<0.05). There was no statistical difference in FⅤ∶C in 7-day storage group (P>0.05), but it decreased gradually in 31-day storage group (P<0.05). There was no statistical difference in Fib, TP and Alb (P>0.05). 【Conclusion】 Although FⅧ∶C is decreased in thawed FFP stored at 2-6℃ for 7 days, it is still about 52.4%, which should be able to play a normal role in clinical practice.
6.Mechanism of Zhishi Xiebai Guizhitang in Treating AS Based on Regulation of Cholesterol Metabolism in Foam Cells by TRPA1
Zhanzhan HE ; Zhen YANG ; Xuguang TAO ; Xiangyun CHEN ; Wei DING ; Ce CHU ; Yulu YUAN ; Yuxin ZHANG ; Yongqi XU ; Peizhang ZHAO ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):1-10
ObjectiveTo explore the effect and mechanism of Zhishi Xiebai Guizhitang on the progression of atherosclerosis (AS) mice based on the regulation of cholesterol metabolism in foam cells by transient receptor potential channel ankyrin 1 (TRPA1). MethodThe AS model was established on apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. The mice were randomly divided into low-dose, middle-dose, and high-dose groups of Zhishi Xiebai Guizhitang (2.97, 5.94, 11.88 g·kg-1) and simvastatin group (0.002 g·kg-1), and the drug was administered along with a high-fat diet. C57BL/6J mice were fed an ordinary diet as a normal group. After the above process, the aorta and serum of mice were taken. The pathological changes of the aortic root were observed by hematoxylin-eosin (HE) staining. The lipid plaques in the aorta were observed by gross oil redness. Serum levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), and high density lipoprotein cholesterol (HDL-C) were detected, and the levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) were detected by enzyme-linked immunosorbent assay (ELISA). Western blot and immunohistochemical method were used to analyze the expression of TRPA1, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and mannose receptor (CD206). ResultFrom the perspective of drug efficacy, compared with the normal group, pathological changes such as plaque, a large number of foam cells, and cholesterol crystals appeared in the aorta of the model group, and the serum levels of TC, LDL-C, IL-1β, and IL-18 were significantly increased (P<0.01). The HDL-C level was significantly decreased (P<0.01), and the CD206 level in aortic tissue was significantly decreased (P<0.01). Compared with the model group, the lipid deposition in the aorta was alleviated in all drug administration groups. In addition, except for the high-dose group of Zhishi Xiebai Guizhitang, all drug administration groups could significantly decrease the levels of TC and LDL-C (P<0.01). In terms of inflammation, except for the middle-dose group of Zhishi Xiebai Guizhitang, the levels of IL-1β and IL-18 were significantly decreased in all drug administration groups (P<0.05). Moreover, Zhishi Xiebai Guizhitang could also up-regulate the levels of CD206, and the difference was significant in the middle-dose and high-dose groups (P<0.05). From the perspective of mechanism, the expression levels of TRPA1, ABCA1, and ABCG1 in the aorta in the model group were lower than those in the normal group (P<0.05). Compared with the model group, all drug administration groups significantly increased the expression of TRPA1 in the aorta (P<0.05), and the expressions of ABCA1 and ABCG1 were increased. The differences in the middle-dose and high-dose groups and the simvastatin group were significant (P<0.05), which was basically consistent with the trend of immunohistochemical results. ConclusionZhishi Xiebai Guizhitang can effectively reduce blood lipid and inflammation levels and inhibit the formation of aortic plaque. The mechanism may be explained as follows: the expressions of ABCA1 and ABCG1 downstream are increased through TRPA1, which promotes cholesterol outflow in foam cells, thereby regulating cholesterol metabolism, intervening in inflammation level to a certain extent, and finally treating AS.
7.Effect and Mechanism of Chinese Medicine in Treatment of Osteoporosis
Yulu YUAN ; Zhen YANG ; Wei DING ; Ce CHU ; Xuguang TAO ; Xiangyun CHEN ; Zhanzhan HE ; Peizhang ZHAO ; Yongqi XU ; Yuxin ZHANG ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(4):290-298
Osteoporosis (OP) is a common bone disease affecting the quality of life and causing huge medical burden to the patients and society. The occurrence of OP is mainly caused by excessive bone resorption and insufficient bone formation, which are directly influenced by external calcium ion balance. Calcium imbalance can impair bone integrity, reduce the calcium supply to the bone, and lower the calcium content in the bone, thus triggering OP. Drugs are the main anti-OP therapy in modern medicine, which, however, may cause adverse reactions and drug dependence. Chinese medicines have good clinical effects and high safety in treating OP, being suitable for long-term use. Recent studies have shown that Chinese medicines can alleviate estrogen deficiency, regulate bone cell and calcium metabolism, which is crucial for the formation and development of OP. The transient receptor potential cation channel superfamily V members 5 and 6 (TRPV5 and TRPV6, respectively) affect bone homeostasis by mediating the transmembrane calcium ion transport in the intestine (TRPV6) and kidney (TRPV5). Therefore, TRPV5/6 is one of the key targets to understand the anti-OP mechanisms of the effective parts of Chinese medicines, which is worthy of further study. This paper summarizes the research results about the anti-OP effects of Chinese medicines in the last two decades, especially the mechanism of regulating calcium metabolism, aiming to provide new ideas for the basic research, clinical application, and drug development of OP treatment.
8.Linggui Zhugantang Treats Chronic Bronchitis in Rats via PLA2-TRPV1/TRPA1 Pathway
Wei DING ; Wenlai WANG ; Zhenhong LIU ; Xiangyun CHEN ; Zhanzhan HE ; Ce CHU ; Yulu YUAN ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Zhen YANG ; Hongxia ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(14):1-9
ObjectiveTo study the effect and mechanism of Linggui Zhugantang in treating chronic bronchitis (CB) induced by exposure to cigarette smoke combined with tracheal instillation of lipopolysaccharide (LPS). MethodSixty SPF-grade SD rats were randomly divided into normal, model, dexamethasone (1 mg·kg-1), and high-, medium-, and low-dose (30.06, 15.03, 7.515 g·kg-1, respectively) Linggui Zhugantang groups by the body weight stratification method, with 10 rats in each group. Each group was administrated with 200 μL LPS (1 g·L-1) by tracheal instillation on days 1 and 14, respectively, while the normal group was administrated with an equal volume of normal saline. Except the normal group, the other groups were exposed to cigarette smoke on days 2-13 and 15-30 (10 cigarettes/time/30 min, twice/day) for the modeling of CB. The rats were administrated with corresponding drugs by gavage for 30 consecutive days from day 2 of modeling, and the mental status, behavior, and body weights of the rats were observed and measured. The wet/dry mass ratio (W/D) of the left lung was measured 30 days after modeling. Hematoxylin-eosin staining was employed to observe the pathological changes in the lung and bronchial tissues. The bronchial mucus secretion and goblet cell proliferation were observed by Alcian blue-periodic acid Schiff (AB-PAS) staining. The levels of mucin 5AC (MUC5AC), interleukin (IL)-13, IL-6, and tumor necrosis factor (TNF)-α in the serum were determined by enzyme-linked immunosorbent assay. The expression of phospholipase A2 (PLA2), transient receptor potential vanilloid receptor 1 (TRPV1), and transient receptor potential ankyrin 1 (TRPA1) in the lung tissue was quantitatively analyzed by immunohistochemistry and Western blot. ResultCompared with the normal group, the model group showcased abnormal mental status and behaviors, bloody secretion in the nose and mouth, the mortality rate of 40%, decreased body weight, severe lung bronchial structure damage, a large number of inflammatory mediators and inflammatory cell infiltration in the tube wall, hyperemia, edema, and fibroplasia, massive proliferation of goblet cells, excessive secretion and accumulation of mucus, stenosis and deformation of the lumen, and aggravation of pulmonary edema (P<0.01). In addition, the model group had higher levels of MUC5AC, IL-13, IL-6, and TNF-α in the serum and higher expression of PLA2 in the lung tissue than the normal group (P<0.01). Compared with the model group, the medication groups showed normal mental status and behaviors, reduced mortality rate, stable weight gain, reduced lung and bronchial injuries, decreased goblet cell proliferation and mucus secretion, and alleviated pulmonary edema (P<0.01). Furthermore, Linggui Zhugantang lowered the levels of MUC5AC, IL-13, IL-6, and TNF-α in the serum and down-regulated the protein levels of PLA2, TRPV1, and TRPA1 in the lung tissue (P<0.01). ConclusionLinggui Zhugantang can reduce the pulmonary inflammation and airway mucus hypersecretion in the rat model of chronic bronchitis. It may exert the effects of reducing inflammation and resolving phlegm by regulating the PLA2-TRPV1/TRPA1 pathway.
9.Effect of Qingfei Paidu Decoction on Acute Lung Injury Model Mice Based on TRPV1/TRPA1 Heat-sensitive Channel
Yulu YUAN ; Zhanzhan HE ; Ce CHU ; Xuguang TAO ; Zhen YANG ; Xiangyun CHEN ; Wei DING ; Yongqi XU ; Yuxin ZHANG ; Peizhang ZHAO ; Wanping CHEN ; Hongxia ZHAO ; Wenlai WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):95-102
ObjectiveTo investigate the mechanism and effect of Qingfei Paidu decoction on transient receptor potential vanilloid-1/Transient receptor potential ankyrin1 (TRPV1/TRPA1) based on heat-sensitive channel and inflammatory response. MethodAccording to body weight, 80 8-week-old C57BL/6 mice were randomly divided into the normal group, model group, dexamethasone group (5 mg·kg-1), and low-dose, medium-dose, and high-dose groups of Qingfei Paidu decoction (14.865, 29.73, 59.46 g·kg-1), with 12 mice in each group. In addition to the normal group, the other groups were administered 20 μL (1×10-3 g·kg-1) to each mouse by airway infusion to establish the acute lung injury (ALI) model. In the administration group, the drug was given 1 h after modeling and again after an interval of 24 h. The lung tissue was taken 36 h after modeling. Double lung wet/dry weight ratio(W/D), hematoxylin-eosin (HE) staining, enzyme-linked immunosorbent assay (ELISA), and Western blot were used to observe and detect the pathological changes of lung tissue, expression levels of inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and expressions of TRPV1 and TRPA1 proteins in heat-sensitive channel, nuclear factor kappa-B (NF-κB), inhibitor of NF-κB (IκBα) in inflammatory pathway, and phosphorylated proteins. The phosphorylated protein/total protein ratio was calculated. ResultCompared with that in the normal group, the lung tissue of mice in the model group was seriously damaged, and pulmonary capillary permeability increased. Alveolar capillary congestion and dilation destroyed the complete structure of the alveolar, and the alveolar wall thickened. A large number of inflammatory cells and red blood cells were infiltrated, and pulmonary edema was significantly aggravated. The expressions of TNF-α, IL-6, TRPV1, TRPA1, phosphorylated NF-κB p65/NF-κB p65, and phosphorylated IκBα/IκBα were significantly increased (P<0.01), and the whole lung W/D was significantly increased (P<0.01). Compared with the model group, the dexamethasone group and low-dose, medium-dose, and high-dose groups of Qingfei Paidu decoction could significantly improve pulmonary edema. TNF-α, IL-6, TRPV1, TRPA1, lung tissue NF-κB p65, and IκBα phosphorylated protein/total protein ratio decreased significantly (P<0.05, P<0.01). The whole lung W/D also decreased significantly (P<0.05, P<0.01). ConclusionQingfei Paidu decoction has anti-inflammatory and protective effects on LPS-ALI mice, which can effectively reduce inflammation, induce diuresis, and alleviate edema. Its mechanism may be related to the regulation of the expression of TRPA1 and TRPV1 and the inhibition of the activation of the NF-κB pathway.
10.Scoping review of continuous bladder irrigation practice following transurethral resection of the prostate
Jingxiong WU ; Wenwen CHEN ; Huihui FANG ; Chen ZHU ; Xiangyun LU
Chinese Journal of Modern Nursing 2024;30(21):2929-2935
Objective:To comprehensively and systematically collect and review domestic and international studies on the practices of continuous bladder irrigation (CBI) following transurethral resection of the prostate (TURP), including the topics, research methods, and evaluation techniques used in these studies, and to provide clinical nursing staff with a reference.Methods:Nine Chinese and English databases were systematically searched, including CNKI, Wanfang, SinoMed, VIP, Embase, Cochrane Library, PubMed, CINAHL, and Web of Science. The search covered all literature up to April 10, 2023. The practices of CBI were extracted and systematically analyzed, and the results were reported in a standardized manner using a scoping review methodology.Results:A total of 23 eligible studies were included, comprising two English articles and 21 Chinese articles. The types of studies included 12 randomized controlled trials and 11 quasi-experimental studies. The interventions were categorized into single and comprehensive measures, including methods such as adjusting the temperature and flow rate of bladder irrigation, selection of indwelling catheters, traditional Chinese medicine-based nursing, perioperative psychological care, and rapid recovery protocols. The evaluation metrics used in the studies were classified into three levels: symptom indicators, process indicators, and management indicators.Conclusions:Research on CBI following TURP has achieved a certain scale, with a variety of intervention methods currently available. However, there is still a lack of high-quality evidence. Future studies should focus on enhancing research design, developing standardized quality assessment tools for bladder irrigation, and improving innovative irrigation devices to enhance clinical nursing quality.

Result Analysis
Print
Save
E-mail