1.Buqi Huoxue Compounds intervene with the expression of related factors and autophagy related proteins in a rat model of cerebral ischemia/reperfusion
Yuning CHEN ; Ying JIANG ; Xiangyu LIAO ; Qiongjun CHEN ; Liang XIONG ; Yue LIU ; Tong LIU
Chinese Journal of Tissue Engineering Research 2025;29(6):1152-1158
BACKGROUND:Buqi Huoxue Compounds have significant clinical efficacy in treating ischemic stroke with Qi deficiency and phlegm stasis;however,the exact mechanism of action is not clear. OBJECTIVE:To observe the effect of Buqi Huoxue Compounds on the expression of vascular endothelial growth factor,basic fibroblast growth factor,brain-derived neurotrophic factor and autophagy related protein Beclin1 and p62 in a rat model of cerebral ischemia/reperfusion. METHODS:Forty male Sprague-Dawley rats were randomly divided into sham operation group,model group,Buqi Huoxue Compounds group and autophagy inhibitor group,with 10 rats in each group.In the latter three groups,a rat model of cerebral ischemia/reperfusion injury was established.The Buqi Huoxue Compounds group was intragastrically given Buqi Huoxue Compounds(6.49 g/kg,administered three times a day)2 hours after reperfusion;the autophagy inhibitor group was intragastrically given Buqi Huoxue Compounds(6.49 g/kg,administered three times a day)2 hours after reperfusion and intraperitoneally given 3-methyladenine 2 hours before gavage and at days 1-3 of gavage.The sham operation group and model group were given equal amounts of saline by gavage for 7 consecutive days.Neurological function,cerebral infarct volume,brain tissue morphology and expression of vascular endothelial growth factor,basic fibroblast growth factor,brain-derived neurotrophic factor and autophagy-related proteins Beclin1 and p62 in the ischemic cortical region of rats were detected at 24 hours after the final administration. RESULTS AND CONCLUSION:Zea-Longa scoring results showed that the neurological function of rats was severely damaged after modeling and neurological deficit of rats in the Buqi Huoxue Compounds group was less than that in the model group and the autophagy inhibitor group(P<0.05).TTC staining showed that cerebral infarct foci were observed in the model group,Buqi Huoxue Compounds group,and autophagy inhibitor group,and the cerebral infarct volume in the Buqi Huoxue Compounds group was lower than that in the model group and the autophagy inhibitor group(P<0.05).The results of hematoxylin-eosin staining in ischemic brain tissues showed that there were large gaps between nerve cells in the model group and cell arrangement was not neat,and cytoplasmic agglutination and pyknosis were observed.Immunohistochemical staining results showed that vascular endothelial growth factor was mostly expressed in neuronal cells,glial cells and capillary endothelium;basic fibroblast growth factor and brain-derived neurotrophic factor were mostly expressed in neuronal cells and glial cells;and there was no significant difference in the expression of vascular endothelial growth factor,basic fibroblast growth factor,and brain-derived neurotrophic factor among the four groups(P>0.05).The results of western blot assay showed that compared with the sham operation group,Beclin1 protein expression was decreased(P<0.05)and p62 protein expression was elevated(P<0.05)in the model group;compared with the model group,Beclin1 protein expression was increased(P<0.05)and p62 protein expression was reduced(P<0.05)in the Buqi Huoxue Compounds group;compared with the Buqi Huoxue Compounds group,Beclin1 protein expression was decreased(P<0.05)and p62 protein expression was elevated(P<0.05)in the autophagy inhibitor group.To conclude,Buqi Huoxue Compounds attenuate cerebral ischemia-reperfusion injury in rats by promoting autophagy.
2.Target of neohesperidin in treatment of osteoporosis and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells
Zhenyu ZHANG ; Qiujian LIANG ; Jun YANG ; Xiangyu WEI ; Jie JIANG ; Linke HUANG ; Zhen TAN
Chinese Journal of Tissue Engineering Research 2025;29(7):1437-1447
BACKGROUND:Previous studies have found that neohesperidin can delay bone loss in ovariectomized mice and has the potential to treat osteoporosis,but its specific mechanism of action remains to be explored. OBJECTIVE:To explore the key targets and possible mechanisms of neohesperidin in the treatment of osteoporosis based on bioinformatics and cell experiments in vitro. METHODS:The gene expression dataset related to osteoporosis was obtained from GEO database,and the differentially expressed genes were screened and analyzed in R language.The osteoporosis-related targets were screened from GeneCards and DisGeNET databases,and the neohesperidin-related targets were screened from ChEMBL and PubChem databases,and the common targets were obtained by intersection of the three.The String database was used to construct the PPI network of intersection genes,and the key targets were screened.The DAVID database was used for GO and KEGG enrichment analysis.The AutoDock software was used to verify the molecular docking between the neohesperidin and the target protein.The effect of neohesperidin on osteogenic differentiation of C57 mouse bone marrow mesenchymal stem cells was detected.Complete medium was used as blank control group;osteogenic induction medium was used as the control group;and osteogenic induction medium containing different concentrations of neohesperidin(25,50 μmol/L)was used as experimental group.The expression of alkaline phosphatase,the degree of mineralization,the expression of osteogenic-related genes and target genes during osteogenic differentiation of cells were measured at corresponding time points. RESULTS AND CONCLUSION:(1)9 253 differentially expressed genes,2 161 osteoporosis-related targets,and 326 neohesperidin-related targets were screened.There were 53 common targets among the three.All 53 genes were up-regulated in osteoporosis samples.The PPI network screened the target gene PRKACA of research significance.GO function and KEGG pathway enrichment analysis showed that neohesperidin's treatment of osteoporosis through PRKACA target mainly depended on biological processes such as protein phosphorylation and protein autophosphorylation,acting on endocrine resistance,proteoglycan in cancer,and estrogen signaling pathway to play a therapeutic role.Molecular docking results showed that neohesperidin had a certain binding ability to the protein corresponding to the target PRKACA.(2)The results of alkaline phosphatase staining showed that neohesperidin could promote the expression of alkaline phosphatase in the early stage of osteogenic differentiation of mesenchymal stem cells.Alizarin red staining showed that neohesperidin could promote the mineralization of osteogenic differentiation of mesenchymal stem cells.RT-qPCR results showed that neohesperidin could increase the mRNA expression of alkaline phosphatase,PRKACA,and osteocalcin.(3)These results indicate that neohesperidin may promote osteogenic differentiation through PRKACA target on the estrogen signaling pathway to prevent and treat osteoporosis.
3.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
4.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
5.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
6.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
7.Retinoic acid ameliorates rheumatoid arthritis by attenuating inflammation and modulating macrophage polarization through MKP-1/MAPK signaling pathway
Mengyuan XIN ; Hangyu JIN ; Xiangyu GUO ; Liang ZHAO ; Xiangdan LI ; Dongyuan XU ; Long ZHENG ; Lan LIU
The Korean Journal of Physiology and Pharmacology 2025;29(1):45-56
Macrophages are innate immune cells connected with the development of inflammation. Retinoic acid has previously been proved to have anti-inflammatory and anti-arthritic properties. However, the exact mechanism through which retinoic acid modulates arthritis remains unclear. This study aimed to investigate whether retinoic acid ameliorates rheumatoid arthritis by modulating macrophage polarization. This study used retinoic acid to treat mice with adjuvant arthritis and evaluated anti-inflammatory effects by arthritis score, thermal nociceptive sensitization test, histopathologic examination and immunofluorescence assays. In addition, its specific anti-arthritic mechanism was investigated by flow cytometry, cell transfection and inflammatory signaling pathway assays in RAW264.7 macrophages in vitro. Retinoic acid significantly relieved joint pain and attenuated inflammatory cell infiltration in mice. Furthermore, this treatment modulated peritoneal macrophage polarization, increased levels of arginase 1, as well as decreased inducible nitric oxide synthase expression. In vitro, we verified that retinoic acid promotes macrophage transition from the M1 to M2 type by upregulating mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression and inhibiting P38, JNK and ERK phosphorylation in lipopolysaccharide-stimulated RAW264.7 cells. Notably, the therapeutic effects of retinoic acid were inhibited by MKP-1 knockdown. Retinoic acid exerts a significant therapeutic effect on adjuvant arthritis in mice by regulating macrophage polarization through the MKP-1/MAPK pathway, and play an important role in the treatment of rheumatic diseases.
8.Trends in prevalence of overweight and obesity among adult residents in Zhejiang Province from 2015 to 2023
CHEN Xiangyu ; WANG Meng ; HU Ruying ; GUAN Yunqi ; LIANG Mingbin ; HE Qingfang ; YAO Weiyuan ; ZHONG Jieming
Journal of Preventive Medicine 2025;37(11):1093-1098
Objective:
To investigate the prevalence levels and trends of overweight and obesity among adult residents in Zhejiang Province from 2015 to 2023, so as to provide a basis for developing regional weight management strategies.
Methods:
Permanent residents aged ≥18 years from Zhejiang Province who participated in the China Chronic Disease and Risk Factor Surveillance Project in 2015, 2018, and 2023 were selected as survey subjects. Data on sociodemographic information, height, weight and waist circumference were collected through questionnaire surveys and physical examinations. The prevalence of overweight, obesity, and central obesity were calculated and standardized using data from the Seventh National Population Census of Zhejiang Province in 2020. The Cochran-Armitage trend test was employed to analyze the trends in prevalence of overweight, obesity, and central obesity across different genders, ages and regions.
Results:
A total of 23 902 individuals were surveyed, comprising 10 985 males (45.96%) and 12 917 females (54.04%). Participants were aged ≥60 years, with 13 088 individuals accounting for 54.76%. There were 9 388 urban residents (39.28%) and 14 514 rural residents (60.72%). The standardized prevalence of overweight among residents increased from 30.05% in 2015 to 33.98% in 2023, the standardized prevalence of obesity increased from 7.67% to 15.22%, and the standardized prevalence of central obesity increased from 22.81% to 33.82%, all showed upward trends (all P<0.05). In 2015, 2018, and 2023, the standardized prevalence of overweight was higher in males than in females. In 2018 and 2023, the standardized prevalence of obesity and central obesity were higher in males than in females (all P<0.05). From 2015 to 2023, the standardized prevalence of overweight, obesity, and central obesity among both males and females showed upward trends (all P<0.05). In 2015, 2018 and 2023, the prevalence of central obesity showed an increasing trend with age (all P<0.05). From 2015 to 2023, upward trends were observed in the prevalence of overweight, obesity, and central obesity among residents aged 18-<45 years and aged ≥60 years, as well as in the prevalence of obesity and central obesity among residents aged 45-<60 years (all P<0.05). In 2015, 2018 and 2023, the standardized prevalence of overweight obesity were higher in urban areas than in rural areas, while the standardized prevalence of central obesity was lower in urban areas (all P<0.05). From 2015 to 2023, the standardized prevalence of overweight, obesity, and central obesity among both urban and rural areas showed upward trends (all P<0.05).
Conclusion
From 2015 to 2023, the prevalence of overweight, obesity, and central obesity among adult residents in Zhejiang Province showed increasing trends, with variations in prevalence levels and trends observed across genders, ages, and urban / rural areas.
9.Spatial Heterogeneity and Risk Factors of Dental Caries in 12-Year-Old Children in Shanxi Province,China
Hou RUXIA ; Yang TINGTING ; Liu JIAJIA ; Chen HAO ; Kang WEN ; Li JUNMING ; Shi XIAOTONG ; Liang YI ; Liu JUNYU ; Zhao BIN ; Wang XIANGYU
Biomedical and Environmental Sciences 2024;37(10):1173-1183
Objective This study aimed to explore the spatial heterogeneity and risk factors for dental caries in 12-year-old children in Shanxi province,China. Methods The data encompassed 3,721 participants from the two most recent oral health surveys conducted across 16 districts in Shanxi Province in 2015 and 2018.Eighteen specific variables were analyzed to examine the interplay between socioeconomic factors,medical resources and environmental conditions.The Geo-detector model was employed to assess the impacts and interactions of these ecological factors. Results Socioeconomic factors(Q=0.30,P<0.05)exhibited a more substantial impact compared to environmental(Q=0.19,P<0.05)and medical resource factors(Q=0.25,P<0.05).Notably,the urban population percentage(UPP)demonstrated the most significant explanatory power for the spatial heterogeneity in caries prevalence,as denoted by its highest q-value(q=0.51,P<0.05).Additionally,the spatial distribution's heterogeneity of caries was significantly affected by SO2 concentration(q=0.39,P<0.05)and water fluoride levels(q=0.27,P<0.05)among environmental factors. Conclusion The prevalence of caries exhibited spatial heterogeneity,escalating from North to South in Shanxi Province,China,influenced by socioeconomic factors,medical resources,and environmental conditions to varying extents.
10.Excavation of the Active Components and Potential Mechanisms of Mori Cortex-Lycii Cortex Intervention in Acute Lung Injury with Network Pharmacology Combined with Experimental Validation
Tianyu ZHANG ; Zhenqi WU ; Guanghua LIU ; Da ZHAO ; Xiyu ZHAO ; Xuejie YU ; Xiangyu LIANG ; Zhaodong QI
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(11):42-50
Objective To validate the mechanism of Mori Cortex-Lycii Cortex(MCLC)in intervening acute lung injury(ALI)based on network pharmacology,molecular docking combined with animal experiments.Methods The TCMSP database was used to obtain the active components of MCLC;the SwissTargetPrediction database was used to predict the targets of active components;the GeneCards database and DisGeNET database were used to collect the disease targets of ALI;the key targets were screened by constructing a PPI network,and the key targets were subjected to GO and KEGG pathway enrichment;a drug-component-target-pathway network was constructed using Cytoscape software;AutoDock and PyMOL software were used to validate the molecular docking of some of the compounds and targets;LPS was used to establish a mouse model of ALI for experimental validation,and experimental validation was performed to main targets and pathways.Results Totally 44 active components of MCLC and 138 action targets were obtained;26 potential targets of MCLC intervention in ALI were obtained,mainly TNF,EGFR,NFKB1,MPO,TNFRSF1A,NOX4,etc.,and the key pathways were MAPK signaling pathway,IL-17 signaling pathway,NF-κB signaling pathway,etc.;molecular docking results showed that the core active components of MCLC and the main targets had strong binding activities;animal experiments showed that MCLC at medium and high dosages could effectively improve the lung histopathological damage in ALI mice,decrease the contents of IL-6 and TNF-α in serum(P<0.01),and increase IL-10 content(P<0.01);MCLC inhibited protein expressions of EGFR,PI3K,AKT,NF-κB p65 in lung tissue(P<0.01).Conclusion MCLC may intervene ALI by components such as quercetin and buddleoside,acting on targets including EGFR and TNF,through ulti-pathways of EGFR/PI3K/NF-κB signaling pathway,etc.


Result Analysis
Print
Save
E-mail