1.Effectiveness of three-dimensional-printed microporous titanium prostheses combined with flap implantation in treatment of large segmental infectious bone defects in limbs.
Yongqing XU ; Xinyu FAN ; Teng WANG ; Shaoquan PU ; Xingbo CAI ; Xiangwen SHI ; Wei LIN ; Xi YANG ; Jian LI ; Min LIU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(5):521-528
OBJECTIVE:
To analyze the effectiveness of single three-dimensional (3D)-printed microporous titanium prostheses and flap combined prostheses implantation in the treatment of large segmental infectious bone defects in limbs.
METHODS:
A retrospective analysis was conducted on the clinical data of 76 patients with large segmental infectious bone defects in limbs who were treated between January 2019 and February 2024 and met the selection criteria. Among them, 51 were male and 25 were female, with an age of (47.7±9.4) years. Of the 76 patients, 51 had no soft tissue defects (single prostheses group), while 25 had associated soft tissue defects (flap combined group). The single prostheses group included 28 cases of tibial bone defects, 11 cases of femoral defects, 5 cases of humeral defects, 4 cases of radial bone defects, and 3 cases of metacarpal, or carpal bone defects, with bone defect length ranging from 3.5 to 28.0 cm. The flap combined group included 3 cases of extensive dorsum of foot soft tissue defects combined with large segmental metatarsal bone defects, 19 cases of lower leg soft tissue defects combined with large segmental tibial bone defects, and 3 cases of hand and forearm soft tissue defects combined with metacarpal, carpal, or radial bone defects, with bone defect length ranging from 3.8 to 32.0 cm and soft tissue defect areas ranging from 8 cm×5 cm to 33 cm×10 cm. In the first stage, vancomycin-loaded bone cement was used to control infection, and flap repair was performed in the flap combined group. In the second stage, 3D-printed microporous titanium prostheses were implanted. Postoperative assessments were performed to evaluate infection control and bone integration, and pain release was evaluated using the visual analogue scale (VAS) score.
RESULTS:
All patients were followed up postoperatively, with an average follow-up time of (35.2±13.4) months. In the 61 lower limb injury patients, the time of standing, walk with crutches, and fully bear weight were (2.2±0.6), (3.9±1.1), and (5.4±1.1) months, respectively. The VAS score at 1 year postoperatively was significantly lower than preoperative one ( t=-10.678, P<0.001). At 1 year postoperatively, 69 patients (90.8%) showed no complication such as infection, fracture, prosthesis displacement, or breakage, and X-ray films indicated good integration at the prosthesis-bone interface. According to the Paley scoring system for the healing of infectious bone defects, the results were excellent in 37 cases, good in 29 cases, fair in 3 cases, and poor in 7 cases. In the single prostheses group, during the follow-up, there was 1 case each of femoral prostheses fracture, femoral infection, and tibial infection, with a treatment success rate of 94.1% (48/51). In lower limb injury patients, the time of fully bear weight was (5.0±1.0) months. In the flap combined group, during the follow-up, 1 case of tibial fixation prostheses screw fracture occurred, along with 2 cases of recurrent foot infection in diabetic patients and 1 case of tibial infection. The treatment success rate was 84.0% (21/25). The time of fully bear weight in lower limb injury patients was (5.8±1.2) months. The overall infection eradication rate for all patients was 93.4% (71/76).
CONCLUSION
The use of 3D-printed microporous titanium prostheses, either alone or in combination with flaps, for the treatment of large segmental infectious bone defects in the limbs results in good effectiveness with a low incidence of complications. It is a feasible strategy for the reconstruction of infectious bone defects.
Humans
;
Male
;
Female
;
Middle Aged
;
Printing, Three-Dimensional
;
Titanium
;
Retrospective Studies
;
Surgical Flaps
;
Adult
;
Prosthesis Implantation/methods*
;
Plastic Surgery Procedures/methods*
;
Treatment Outcome
;
Prostheses and Implants
;
Bone Diseases, Infectious/surgery*
;
Extremities/surgery*
;
Prosthesis Design
2.Motion Trajectory of 3-PH/R Ankle Rehabilitation Robot
Zongxing LU ; Xiangwen WEI ; Can CAI
Journal of Medical Biomechanics 2021;36(1):E110-E115
Objective To study the influence of different trajectories of 3-PH/R ankle rehabilitation robot on joints and muscles. Methods The 3-PH/R ankle rehabilitation robot was simplified and imported into biomechanical modeling software by analyzing the kinematics principles. Using the actual motion trajectory of ankle rehabilitation robot as model driving, the joint and muscle forces were compared under three different trajectories, namely, dorsiflexion/plantarflexion, inversion/eversion and nutation. The correlation analysis on three motion trajectories was conducted. Results Nutation could satisfy the function of both plantar dorsiflexion/plantarflexion, and inversion/eversion, and made the ankle muscles fully exercised. The maximum difference in joint force under three different rehabilitation trajectories was 0.3 N. Different muscles had different sensitivity to trajectories. Conclusions The continuous dynamic analysis of muscle force and joint force under three kinds of rehabilitation trajectories was implemented. The results have certain theoretical significance and clinical reference value for the clinical application of ankle rehabilitation robot and the formulation of rehabilitation trajectory.
3.Numerical Simulation on Support Performance of NiTi Alloy Thoracic Aortic Stent
Xiangwen CAI ; Qingsong HAN ; Qingxiang ZHANG ; Xiaojuan FENG ; Yu XUE
Journal of Medical Biomechanics 2020;35(4):E410-E414
Objective To study the influence of different support heights, support numbers and cross-sectional dimensions on support performance of NiTi thoracic aortic stents. Methods Twenty-seven scaffold models with different parameters were established by using AutoCAD 2016 and SoildWorks 2014 software. HyperMesh 14.0 was used for tetrahedral mesh division, and ABAQUS 2017 was used for support performance simulation analysis. Results With the decrease of support height, the support stiffness would increase; a larger cross-section size would lead to a larger support stiffness; with the increase of support numbers, the support stiffness would increase. Among the influencing factors of support performance, the order of influence degree was support height>section size>support numbers. Conclusions The research findings have certain guiding significance for the development and research of thoracic aortic stents, and provide theoretical basis for the selection and optimization of clinical stents.

Result Analysis
Print
Save
E-mail