1.Specific RNA transcripts (SRTs): From concepts to the clinic.
Qili SHI ; Haochen LI ; Zhiao CHEN ; Xianghuo HE
Chinese Medical Journal 2025;138(22):2895-2906
Over the past decade, high-throughput RNA sequencing (RNA-seq) has vastly expanded our understanding of transcriptome dynamics in human physiology and disease. As a powerful tool for investigating systematic changes in RNA biology, RNA-seq has facilitated the discovery of novel functional RNA species. Mature RNA transcripts, which transmit genetic information from DNA to proteins, undergo intricate transcriptional and post-transcriptional regulation. This process allows a single gene to produce multiple RNA transcripts, each performing specific functions depending on the physiological or pathological context. Specific RNA transcripts (SRTs) are uniquely expressed in particular tissues or tumors and are closely associated with tissue-specific functions or disease states, particularly cancer. This review explores the generation of SRTs through key mechanisms, such as alternative splicing (AS), transcriptional regulation, polyadenylation (polyA), and the influence of transposable elements (TEs). We also examine their critical roles in normal tissue development and diseases, with an emphasis on their relevance to cancer. Furthermore, the potential applications of SRTs in diagnosing and treating diseases, especially malignancies, are discussed. By serving as diagnostic markers and therapeutic targets, SRTs hold significant promise in the development of personalized medicine and precision therapies. This review aims to provide new insights into the importance of SRTs in advancing the understanding and treatment of human diseases.
Humans
;
Neoplasms/genetics*
;
Alternative Splicing/genetics*
;
RNA/genetics*
;
Animals
;
Sequence Analysis, RNA/methods*
;
Polyadenylation/genetics*
2.microRNAs: tiny RNA molecules, huge driving forces to move the cell.
Protein & Cell 2010;1(10):916-926
Cell migration or movement is a highly dynamic cellular process, requiring precise regulation that is essential for a variety of biological processes. microRNAs (miRNAs) are a class of tiny non-coding RNA molecules that function as critical post-transcriptional regulators of gene expression. Emerging evidence demonstrates that miRNAs play important roles in cell migration and directly contribute to extracellular matrix (ECM) remodeling, cell adhesion, and cell signalling that controls cell migration by targeting a large number of protein-coding genes. Accordingly, the dysregulation of these miRNAs has been linked to several migration-related diseases. In this review, we summarize and highlight the recent advances concerning the roles and validated targets of miRNAs in the control of cell movement.
Animals
;
Cell Movement
;
genetics
;
Gene Expression
;
Gene Expression Regulation
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
physiology
;
RNA
;
genetics
;
RNA, Untranslated
;
genetics

Result Analysis
Print
Save
E-mail