1.Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction
Ping ZHANG ; Pengtao ZOU ; Xiao HUANG ; Xianghui ZENG ; Songtao LIU ; Yuanyuan LIU ; Liang SHAO
The Korean Journal of Physiology and Pharmacology 2024;28(5):469-478
Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca2+ concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca2+ concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.
2.Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction
Ping ZHANG ; Pengtao ZOU ; Xiao HUANG ; Xianghui ZENG ; Songtao LIU ; Yuanyuan LIU ; Liang SHAO
The Korean Journal of Physiology and Pharmacology 2024;28(5):469-478
Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca2+ concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca2+ concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.
3.Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction
Ping ZHANG ; Pengtao ZOU ; Xiao HUANG ; Xianghui ZENG ; Songtao LIU ; Yuanyuan LIU ; Liang SHAO
The Korean Journal of Physiology and Pharmacology 2024;28(5):469-478
Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca2+ concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca2+ concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.
4.Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction
Ping ZHANG ; Pengtao ZOU ; Xiao HUANG ; Xianghui ZENG ; Songtao LIU ; Yuanyuan LIU ; Liang SHAO
The Korean Journal of Physiology and Pharmacology 2024;28(5):469-478
Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca2+ concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca2+ concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.
5.Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction
Ping ZHANG ; Pengtao ZOU ; Xiao HUANG ; Xianghui ZENG ; Songtao LIU ; Yuanyuan LIU ; Liang SHAO
The Korean Journal of Physiology and Pharmacology 2024;28(5):469-478
Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca2+ concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca2+ concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.
6.Failure mode and long-term survival after neoadjuvant therapy for locally advanced esophageal squamous cell carcinoma
Ruiqi WANG ; Lin WANG ; Xiao HU ; Honglian MA ; Guoqin QIU ; Zhun WANG ; Xiaojiang SUN ; Yongling JI ; Xiaojing LAI ; Wei FENG ; Liming SHENG ; Yuezhen WANG ; Xia ZHOU ; Youhua JIANG ; Changchun WANG ; Qiang ZHAO ; Xun YANG ; Jinshi LIU ; Jian ZENG ; Haitao JIANG ; Pu LI ; Xianghui DU ; Qixun CHEN ; Yujin XU
Chinese Journal of Radiation Oncology 2023;32(4):301-306
Objective:To analyze the fail mode of neoadjuvant therapy combined with surgery for locally advanced esophageal squamous cell carcinoma (ESCC) after long-term follow-up.Methods:Clinical data of consecutive 238 patients with locally advanced resectable ESCC who underwent neoadjuvant therapy combined with surgery in Zhejiang Cancer Hospital from September 2012 to October 2019 were retrospectively analyzed. The failure mode in the whole cohort was analyzed after long-term follow-up. The overall survival (OS) and disease free survival (DFS) rates were analyzed by Kaplan-Meier method. Survival differences were determined by log-rank test.Results:The pathological complete response (pCR) rate was 42.0% in 238 patients. After a median follow-up of 46.1 months, tumor progression occurred in 96 patients (40.3%), including 25 patients (10.5%) with local recurrence, 61 patients (25.6%) with distant metastases, and 10 patients (4.2%) with simultaneous local recurrence and distant metastases. The median OS and DFS were 64.7 months and 49.9 months. And the 3-, 5-, and 7-year OS and DFS rates were 70.0%, 52.8%, 36.4% and 63.5%, 42.5%, and 30.0%, respectively. The 3-, 5-, and 7-year locoregional recurrence-free survival rates and distant metastasis-free survival rates were 86.0%, 71.4%, 61.2% and 70.6%, 55.9%, 43.0%. Compared with non-pCR patients, the overall progression rate and distant metastasis rate of pCR patients were lower (26.0% vs. 50.7%, 16.0% vs. 32.6%, both P<0.05). And the 3-, 5-, and 7-year OS (83.0% vs. 60.2%, 69.7% vs. 41.7%, 50.4% vs. 27.7%, all P<0.001) and DFS rates (80.4% vs. 51.4%, 63.9% vs. 31.2%, 45.9% vs. 20.3%, all P<0.001) were significantly better in pCR patients. Conclusions:Distant metastasis is the main failure mode of patients with locally advanced ESCC after neoadjuvant therapy. Patients with postoperative pCR can achieve better long-term survival.
7. Research progress of pulse wave velocity applied in cardiovascular diseases
Xianghui ZENG ; Hengli LAI ; Jianping LUO
Chinese Journal of Primary Medicine and Pharmacy 2019;26(16):2045-2048
Cardiovascular diseases have become the most common and most prevalent chronic diseases in the elderly.Smoking, hyperlipidemia, diabetes and other high-risk factors participate in the occurrence and development of atherosclerosis by impairing the structure and function of the vascular wall, resulting in the occurrence of arterial stiffness.Pulse wave conduction velocity(PWV) is the rate at which a pulse wave travels from one specific location of the artery to another specific location along the wall of the artery.It is a simple, effective and repeatable noninvasive index for evaluating arterial elasticity and vascular function.PWV is closely related to cardiovascular disease.In recent years, the relationship between PWV and cardiovascular disease has been deeply studied.The relationship between PWV and coronary heart disease, hypertension, cardiac function, atrial fibrillation and pulmonary hypertension is described in this paper.
8.Analysis of clinical characteristics of 89 patients with infective endocarditis
Jianping LUO ; Xianghui ZENG ; Linling ZHONG ; Chunqing XIAO ; Yongzhong ZHANG ; Zufang XU ; Xianggui WANG
Chinese Journal of Primary Medicine and Pharmacy 2018;25(14):1790-1792
Objective To improve the diagnosis and treatment of infective endocardits(IE)by exploring the causes,pathogenic microorganism,clinical characteristics and therapeutic results of patients with IE.Methods From January 2006 to January 2016,89 cases with IE in Ganzhou People's Hospital were collected,and the clinical charac-teristics were analyzed retrospectively.Results Among the IE patients,40.5%had congenital heart diseases,33.7%had rheumatic heart diseases,18.0% were post-PCI or operative endocarditis,and patients without basic cardiac diseases accounted for 7.9%.The most common clinical manifestations were fever (86.5%),followed by anemia (85.4%).The blood culture positive rate was 63.4%.Streptococci viridians were the most common causative organ-isms(44.2%),followed by coagulase -negative staphylococci(21.2%).Eighty-six patients received echocardio-graphy examination,vegetation was observed in 61cases (68.5%).The hospital mortality rate was 10.1%,mostly due to refractory congestive heart failure and sepsis.Conclusion Congenital heart disease showed an upward trend, rheumatic heart disease decreased significantly.Intermittent fever,anemia are the main clinical manifestations.Blood culture positive rate is not high,Streptococcus viridians is the most common causative organism.Echocardiography is the main basis for the diagnosis.
9.Influence of cyclophosphamide and its metabolites on PTEN gene after acting on ovarian cancer cell line SKOV3
Zhengfang XIONG ; Bing LI ; Xianghui ZENG ; Liyun WANG
Chongqing Medicine 2018;47(4):453-455
Objective To study the effect of cyclophosphamide(CP) and its metabolites acrolein(ACR) on PTEN gene deleted on chromosome 10 after acting on ovarian cancer cellsSKOV3.Methods Different concentrations of CP and ACR were selected to act on recombinant PTEN protein.The phosphorylation activity of PTEN was detected by PNPP.The expression of PTEN protein was detected by Western blot.The binding mode of drug with protein was detected by the biotin combined with protein;meanwhile the expression change of P53/TP53 in PTEN gene pathway was analyzed.The target protein was obtained by immunoprecipitation(IP) after different drug concentrations acting on the cells.The phosphorylation activity of the target protein was detected by high performance liquid chromatography(HPLC).Results After the drug metabolites acting on recombinant PTEN protein,the phosphorylation activity was decreased with the increase of drug concentration,while the expression of ACR antibody action was increased with the drug concentration elevation.The expression of protein and biotin in different experimental groups was increased with the increase of drug concentration.The PTEN phosphorylation activity was decreased with the drug concentration increased in cells,and so did the expression of TP53 protein.Conclusion CP metabolite ACR induces the cytotoxicity by inhibiting PTEN protein phosphorylation activity.
10.The Standard and Advice for Animal Experiment Protocol Post-Approval Monitoring
Yufeng ZHU ; Yuanzhan WANG ; Li GONG ; Peiliang YANG ; Xianghui WU ; Junling ZENG ; Mourong LIU
Chinese Medical Ethics 2016;29(2):298-300
In this article, the authors expounded the necessary and problems of animal experiment post-ap-proval monitoring ( PAM) , which included who should do PAM, how to do PAM, and what the PAM can do. The authors also exposed the following suggestion: formulating the detailed rules, regulations and SOP, strengthening the training of PAM team member and animal experiment personnel, and monitoring the whole process of animal protocol review using the software.

Result Analysis
Print
Save
E-mail