1.Genotype and phenotype correlation analysis of retinitis pigmentosa-associated RHO gene mutation in a Yi pedigree
Yajuan ZHANG ; Hong YANG ; Hongchao ZHAO ; Dan MA ; Meiyu SHI ; Weiyi ZHENG ; Xiang WANG ; Jianping LIU
International Eye Science 2025;25(3):499-505
AIM: To delineate the specific mutation responsible for retinitis pigmentosa(RP)in a Yi pedigree, and to analyze the correlation of RHO gene mutation with clinical phenotype.METHODS:A comprehensive clinical evaluation was conducted on the proband diagnosed with RP and other familial members, complemented by a thorough ophthalmic examination. Peripheral blood samples were obtained from the proband and familial members, from which genomic DNA was extracte. Subsequent whole exome sequencing(WES)was employed to identify the variant genes in the proband. The identified variant gene was validated through Sanger sequencing, then an in-depth analysis of the mutation genes was carried out using genetic databases to ascertain the pathogenic mutation sites. Furthermore, an exhaustive analysis was performed to delineate the genotype and phenotype characteristics.RESULTS:The RP pedigree encompasses 5 generations with 42 members, including 19 males and 23 females. A total of 13 cases of RP were identified, consisting of 4 males and 9 females, which conforms to the autosomal dominant inheritance pattern. The clinical features of this family include an early onset age, rapid progression, and a more severe condition. The patients were found to have night blindness around 6 years old, representing the earliest reported case of night blindness in RP families. The retina was manifested by progressive osteocytoid pigmentation of the fundus, a reduced visual field, and significantly decreased or even vanished a and b amplitudes of ERG. The combined results of WES and Sanger sequencing indicated that the proband had a heterozygous missense mutation of the RHO gene c.1040C>T:p.P347L, where the 1 040 base C of cDNA was replaced by T, causing codon 347 to encode leucine instead of proline. Interestingly, this mutation has not been reported in the Chinese population.CONCLUSION:This study confirmed that the mutant gene of RP in a Yi nationality pedigree was RHO(c.1040C>T). This variant leads to the change of codon 347 from encoding proline to encoding leucine, resulting in a severe clinical phenotype among family members. This study provides a certain molecular, clinical, and genetic basis for genetic counseling and gene diagnosis of RHO.
2.Genotype and phenotype correlation analysis of retinitis pigmentosa-associated RHO gene mutation in a Yi pedigree
Yajuan ZHANG ; Hong YANG ; Hongchao ZHAO ; Dan MA ; Meiyu SHI ; Weiyi ZHENG ; Xiang WANG ; Jianping LIU
International Eye Science 2025;25(3):499-505
AIM: To delineate the specific mutation responsible for retinitis pigmentosa(RP)in a Yi pedigree, and to analyze the correlation of RHO gene mutation with clinical phenotype.METHODS:A comprehensive clinical evaluation was conducted on the proband diagnosed with RP and other familial members, complemented by a thorough ophthalmic examination. Peripheral blood samples were obtained from the proband and familial members, from which genomic DNA was extracte. Subsequent whole exome sequencing(WES)was employed to identify the variant genes in the proband. The identified variant gene was validated through Sanger sequencing, then an in-depth analysis of the mutation genes was carried out using genetic databases to ascertain the pathogenic mutation sites. Furthermore, an exhaustive analysis was performed to delineate the genotype and phenotype characteristics.RESULTS:The RP pedigree encompasses 5 generations with 42 members, including 19 males and 23 females. A total of 13 cases of RP were identified, consisting of 4 males and 9 females, which conforms to the autosomal dominant inheritance pattern. The clinical features of this family include an early onset age, rapid progression, and a more severe condition. The patients were found to have night blindness around 6 years old, representing the earliest reported case of night blindness in RP families. The retina was manifested by progressive osteocytoid pigmentation of the fundus, a reduced visual field, and significantly decreased or even vanished a and b amplitudes of ERG. The combined results of WES and Sanger sequencing indicated that the proband had a heterozygous missense mutation of the RHO gene c.1040C>T:p.P347L, where the 1 040 base C of cDNA was replaced by T, causing codon 347 to encode leucine instead of proline. Interestingly, this mutation has not been reported in the Chinese population.CONCLUSION:This study confirmed that the mutant gene of RP in a Yi nationality pedigree was RHO(c.1040C>T). This variant leads to the change of codon 347 from encoding proline to encoding leucine, resulting in a severe clinical phenotype among family members. This study provides a certain molecular, clinical, and genetic basis for genetic counseling and gene diagnosis of RHO.
3.Metformin exerts a protective effect on articular cartilage in osteoarthritis rats by inhibiting the PI3K/AKT/mTOR pathway
Tianjie XU ; Jiaxin FAN ; Xiaoling GUO ; Xiang JIA ; Xingwang ZHAO ; Kainan LIU ; Qian WANG
Chinese Journal of Tissue Engineering Research 2025;29(5):1003-1012
BACKGROUND:Studies have shown that metformin has anti-inflammatory,anti-tumor,anti-aging and vasoprotective effects,and can inhibit the progression of osteoarthritis,but its specific mechanism of action remains unclear. OBJECTIVE:To investigate the mechanism of metformin on cartilage protection in a rat model of osteoarthritis. METHODS:Forty male Sprague-Dawley rats were randomly divided into four groups(n=10 per group):blank,control,sham-operated,and metformin groups.The blank group did not undergo any surgery.In the sham-operated group,the joint cavity was exposed.In the model group and the metformin group,the modified Hulth method was used to establish the osteoarthritis model.At 1 day after modeling,the rats in the metformin group were given 200 mg/kg/d metformin by gavage,and the model,blank,and sham-operated groups were given normal saline by gavage.Administration in each group was given for 4 weeks consecutively.Hematoxylin-eosin staining,toluidine blue staining,and safranin O-fast green staining were used to observe the morphological structure of rat knee joints.Immunohistochemical staining and western blot were used to detect the protein expression of SOX9,type Ⅱ collagen,a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS5),Beclin1,P62,phosphatidylinositol 3-kinase(PI3K),p-PI3K,protein kinase B(AKT),p-AKT,mammalian target of rapamycin(Mtor),and p-Mtor in rat cartilage tissue. RESULTS AND CONCLUSION:The results of hematoxylin-eosin,toluidine blue and safranin O-fast green staining showed smooth cartilage surface of the knee joints and normal histomorphology in the blank group and the sham-operated group,while in the model group,there was irregular cartilage surface of the knee joint and cartilage damage,with a decrease in the number of chondrocytes and the content of proteoglycans in the cartilage matrix.In the metformin group,there was a significant improvement in the damage to the structure of the cartilage in the knee joints of the rats,and the cartilage surface tended to be smooth,with an increase in the number of chondrocytes and the content of proteoglycans in the cartilage matrix.Immunohistochemistry staining and western blot results showed that compared with the control and sham-operated groups,the expression of SOX9,type Ⅱ collagen,and Beclin1 proteins in the cartilage tissue of rats in the model group was significantly decreased(P<0.05).Conversely,the expression of ADAMTS5,P62,as well as p-PI3K,p-AKT,and p-Mtor proteins was significantly increased(P<0.05).Furthermore,compared with the model group,the expression of SOX9,type Ⅱ collagen,and Beclin1 proteins in the cartilage tissue of rats in the metformin group was significantly increased(P<0.05),while the expression of ADAMTS5,P62,as well as p-PI3K,p-AKT,and p-Mtor proteins was significantly decreased(P<0.05).To conclude,Metformin can improve the autophagy activity of chondrocytes and reduce the degradation of cartilage matrix in osteoarthritis rats by inhibiting the activation of PI3K/AKT/Mtor signaling pathway,thus exerting a protective effect on articular cartilage.
4.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
5.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
6.Modified Xiaoyaosan Alleviates Depression-like Behaviors by Regulating Activation of Hippocampal Microglia Cells in Rat Model of Juvenile Depression
Jiayi SHI ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Feng QIU ; Chang LEI ; Hongyu ZENG ; Kaimei TAN ; Hongqing ZHAO ; Dong YANG ; Yuhong WANG ; Pengxiao GUO ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):46-56
ObjectiveTo investigate the mechanism of Baihuan Xiaoyao Decoction (Xiaoyaosan added with Lilii Bulbus and Albiziae Cortex) in alleviating depression-like behaviors of juvenile rats by regulating the polarization of microglia. MethodSixty juvenile SD rats were randomized into normal control, model, fluoxetine, and low-, medium-, and high-dose (5.36, 10.71, 21.42 g·kg-1, respectively) Baihuan Xiaoyao decoction groups. The rat model of juvenile depression was established by chronic unpredictable mild stress (CUMS). The sucrose preference test (SPT) was carried out to examine the sucrose preference of rats. Forced swimming test (FST) was carried out to measure the immobility time of rats. The open field test (OFT) was conducted to measure the total distance, the central distance, the number of horizontal crossings, and the frequency of rearing. Morris water maze (MWM) was used to measure the escape latency and the number of crossing the platform. The immunofluorescence assay was employed to detect the expression of inducible nitric oxide synthase (iNOS, the polarization marker of M1 microglia) and CD206 (the polarization marker of M2 microglia). Real-time polymerase chain reaction was employed to determine the mRNA levels of iNOS, CD206, pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6] and anti-inflammatory cytokines (IL-4 and IL-10) in the hippocampus. Western blotting was employed to determine the protein levels of iNOS and CD206 in the hippocampus. The levels of IL-4 and IL-6 in the hippocampus were detected by enzyme-linked immunosorbent assay. ResultCompared with the normal control group, the model rats showed a reduction in sucrose preference (P<0.05), an increase in immobility time (P<0.05), decreased motor and exploratory behaviors (P<0.05), and weakened learning and spatial memory (P<0.05). In addition, the model rats showed up-regulated mRNA and protein levels of iNOS and mRNA levels of IL-1β, IL-6, and TNF-α (P<0.05). Compared with the model group, Baihuan Xiaoyao decoction increased the sucrose preference value (P<0.05), shortened the immobility time (P<0.01), increased the motor and exploratory behaviors (P<0.05), and improved the learning and spatial memory (P<0.01). Furthermore, the decoction down-regulated the positive expression and protein level of iNOS, lowered the levels of TNF-α, IL-1β, and IL-6 (P<0.01), promoted the positive expression of CD206, and elevated the levels of IL-4 and IL-10 (P<0.01) in the hippocampus of the high dose group. Moreover, the high-dose Baihuan Xiaoyao decoction group had higher sucrose preference value (P<0.01), shorter immobility time (P<0.01), longer central distance (P<0.01), stronger learning and spatial memory (P<0.01), higher positive expression and protein level of iNOS (P<0.01), lower levels of TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), lower positive expression and mRNA level of iNOS (P<0.05), and higher levels of IL-4 and IL-10 (P<0.05, P<0.01) than the fluoxetine group. ConclusionBaihuan Xiaoyao decoction can improve the depression-like behavior of juvenile rats by inhibiting the M1 polarization and promoting the M2 polarization of microglia in the hippocampus.
7.Effects and mechanism of Setaria italica extract on improving sleep in insomnia mice
Juan WANG ; Chenzi LYU ; Cairong ZHAO ; Hongyu ZHAO ; Zi’ang LI ; Xiang HAN ; Xianglong MENG ; Shuosheng ZHANG
China Pharmacy 2024;35(3):322-326
OBJECTIVE To investigate the effects of Setaria italica extract on improving insomnia model mice and to explore its potential mechanisms. METHODS The mice were randomly assigned into blank group, model group, positive control group (diazepam, 2.6 mg/kg), and S. italica extract low-dose, medium-dose and high-dose groups (1.2, 2.4, 4.8 g/kg), with 10 mice in each group. Except for the blank group, all other groups received intraperitoneal injection of para-chlorophenylalanine (PCPA) to establish the insomnia model. After modeling, the blank group and model group were given a constant volume of normal saline intragastrically, and administration groups were given relevant medicine intragastrically, with a volume of 0.01 mL/g, once a day, for 7 consecutive days. After the administration, the open-field test was conducted to observe the praxiological changes of mice, and to determine the levels of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HTAA) in the hippocampal tissue, as well as the contents of 5-HT, brain-derived neurotrophic factor (BDNF), interleukin-2 (IL-2), IL-6, B-cell lymphoma-2 (Bcl- 2), and Bcl-2-associated X protein (Bax) in the serum. The expression of phosphoinositide 3-kinase/protein kinase B/nuclear factor- κB (PI3K/Akt/NF-κB) signaling pathway related protein was determined in the hippocampus of mice. RESULTS Compared with the model group, the total exercise time of mice in S. italica extract high-dose group was significantly prolonged, but the total rest time was significantly shortened (P<0.01); the number of standing times and modification times were significantly reduced (P< 0.01). The contents of 5-HT, BDNF, and Bcl-2 in serum, and Bcl-2/Bax were significantly increased, while the contents of IL-2, IL-6, and Bax were significantly reduced (P<0.05 or P< 0.01). The content of 5-HTAA in the hippocampal tissue and 202104010910029);the phosphorylation levels of PI3K and Akt proteins were increased significantly, while the phosphorylation level of NF-κB p65 protein was decreased significantly (P<0.05).CONCLUSIONS High-dose of S. italica extract demonstrates significant therapeutic effects on insomnia in mice, and the mechanism of which may be associated with the regulation of PI3K/Akt/NF-κB signaling pathway.
8.Role of Ferroptosis in Osteoarthritis and Traditional Chinese Medicine Intervention: A Review
Xiaojing GUO ; Huan QIN ; Dongliang XIANG ; Yan WANG ; Li ZHANG ; Bo ZHANG ; Shujin WANG ; Xiaotong LI ; Mingyue ZHAO ; Shanhong WU ; Fei PEI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(19):263-272
Osteoarthritis (OA) is characterized by articular cartilage degeneration, synovial hyperplasia, hyperosteogeny, and narrowing of joint space, which can be caused by trauma, inflammation, and other factors. With the increasing global population aging, the incidence of OA is rising year by year, making it a major public health problem that urgently needs to be addressed. Exploring effective treatment schemes is particularly important. The pathogenesis of OA is complex, including oxidative stress, autophagy, and apoptosis. Recent studies have found that ferroptosis, a new type of cell death, is also an important pathogenic factor in OA, characterized by a series of complex changes such as iron ion accumulation, glutathione (GSH) depletion, and mitochondrial dysfunction. Research shows that inhibiting ferroptosis in chondrocytes can promote chondrocyte proliferation, delay extracellular matrix (ECM) degradation, and reduce synovial hyperplasia and inflammation. Targeting ferroptosis is a new direction in the treatment of OA. OA treatment includes intra-articular injections of steroids or hyaluronic acid and artificial joint replacement, but there are limitations. Traditional Chinese medicine (TCM) has been widely used in the treatment of various diseases because of its low cost, low drug resistance, and few side effects. Cell and animal experiments have further confirmed that TCM can intervene in the treatment of OA with ferroptosis from multiple targets, multiple levels, and aspects, but the mechanism of its treatment of OA based on ferroptosis has not been clarified. This paper discussed iron metabolism, lipid peroxidation, cysteine/glutamate transporter system Xc- (system Xc-)/GSH/glutathione peroxidase 4 (GPX4) pathway, nicotinamide adenine dinucleotide phosphate(NADPH)/ferroptosis suppressor protein 1 (FSP1)/coenzyme Q10 (CoQ10) pathway, tumor protein p53 in OA, and related molecular targets of Chinese medicine monomers and compounds on ferroptosis inhibition. Their potential therapeutic mechanisms were further analyzed to provide theoretical guidance for the treatment of OA by TCM and useful reference for the research and development of related drugs.
9.Relationship among physical activity,mild depressive symptoms and frontal alpha power asymmetry in college students
Xiang WANG ; Xiaojing ZHOU ; Shali QIU ; Yuheng ZANG ; Peng WANG ; Jing WANG ; Jinlei ZHAO ; Xin XIN ; Qun ZHAO ; Suowang YIN ; Xing WANG
Chinese Mental Health Journal 2024;38(2):180-185
Objective:To investigate the correlation among physical activity,mild depressive symptoms and frontal alpha power asymmetry in college students.Methods:Seventy college students with mild depressive symp-toms who conformed to the standard of the Self-Rating Scale for Depression(SDS)of 53-62 and 70 normal col-lege students were recruited.The frontal alpha power was measured under quiet and closed-eye state,and the total physical activity(PA)was assessed with the International Physical Activity Questionnaire.Results:The college students with mild depressive symptoms had lower Total PA scores,right frontal alpha power and frontal alpha a-symmetry(FAA)than the normal controls(P<0.001).In college students with mild depressive symptoms,the to-tal PA scores(r=-0.29,P<0.05)and FAA(r=-0.41,P<0.001)were negatively correlated with SDS scores,and the total PA scores were positively correlated with FAA(r=0.34,P<0.01).Conclusion:The college students with mild depressive symptoms may have reduced physical activity and asymmetric right lateralization of frontal alpha power.There is a correlation among depressive symptoms,physical activity and frontal alpha power a-symmetry in college students with mild depressive symptoms.
10.Immunotherapy of pancreatic cancer with triptolide combined with ginsenoside Rg3
Wen-wen ZHAO ; Ting-ting JIANG ; Zhi-rong WANG ; Yun-yun WANG ; Xiang-xiang WU ; Hua-hui ZENG
Acta Pharmaceutica Sinica 2024;59(6):1794-1803
Liposome was used as carrier to carry triptolide and ginsenoside Rg3 in the treatment of pancreatic cancer tumor mice. The effects of liposome on the levels of CD4+ and CD8+ microenvironmental immune factors of pancreatic cancer tumor were investigated, and the tumor inhibitory effect and safety were evaluated. In this study, Pan02 cells were used to construct a tumor-bearing C57BL/6 mouse model. After 14 days of treatment, the changes in tumor volume and body weight of tumor-bearing mice were observed. The results showed that the high and low doses of liposome had significant therapeutic effect on tumor volume in the model group (

Result Analysis
Print
Save
E-mail