1.Severity Assessment Parameters and Diagnostic Technologies of Obstructive Sleep Apnea
Zhuo-Zhi FU ; Ya-Cen WU ; Mei-Xi LI ; Ping-Ping YIN ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(1):147-161
Obstructive sleep apnea (OSA) is an increasingly widespread sleep-breathing disordered disease, and is an independent risk factor for many high-risk chronic diseases such as hypertension, coronary heart disease, stroke, arrhythmias and diabetes, which is potentially fatal. The key to the prevention and treatment of OSA is early diagnosis and treatment, so the assessment and diagnostic technologies of OSA have become a research hotspot. This paper reviews the research progresses of severity assessment parameters and diagnostic technologies of OSA, and discusses their future development trends. In terms of severity assessment parameters of OSA, apnea hypopnea index (AHI), as the gold standard, together with the percentage of duration of apnea hypopnea (AH%), lowest oxygen saturation (LSpO2), heart rate variability (HRV), oxygen desaturation index (ODI) and the emerging biomarkers, constitute a multi-dimensional evaluation system. Specifically, the AHI, which measures the frequency of sleep respiratory events per hour, does not fully reflect the patients’ overall sleep quality or the extent of their daytime functional impairments. To address this limitation, the AH%, which measures the proportion of the entire sleep cycle affected by apneas and hypopneas, deepens our understanding of the impact on sleep quality. The LSpO2 plays a critical role in highlighting the potential severe hypoxic episodes during sleep, while the HRV offers a different perspective by analyzing the fluctuations in heart rate thereby revealing the activity of the autonomic nervous system. The ODI provides a direct and objective measure of patients’ nocturnal oxygenation stability by calculating the number of desaturation events per hour, and the biomarkers offers novel insights into the diagnosis and management of OSA, and fosters the development of more precise and tailored OSA therapeutic strategies. In terms of diagnostic techniques of OSA, the standardized questionnaire and Epworth sleepiness scale (ESS) is a simple and effective method for preliminary screening of OSA, and the polysomnography (PSG) which is based on recording multiple physiological signals stands for gold standard, but it has limitations of complex operations, high costs and inconvenience. As a convenient alternative, the home sleep apnea testing (HSAT) allows patients to monitor their sleep with simplified equipment in the comfort of their own homes, and the cardiopulmonary coupling (CPC) offers a minimal version that simply analyzes the electrocardiogram (ECG) signals. As an emerging diagnostic technology of OSA, machine learning (ML) and artificial intelligence (AI) adeptly pinpoint respiratory incidents and expose delicate physiological changes, thus casting new light on the diagnostic approach to OSA. In addition, imaging examination utilizes detailed visual representations of the airway’s structure and assists in recognizing structural abnormalities that may result in obstructed airways, while sound monitoring technology records and analyzes snoring and breathing sounds to detect the condition subtly, and thus further expands our medical diagnostic toolkit. As for the future development directions, it can be predicted that interdisciplinary integrated researches, the construction of personalized diagnosis and treatment models, and the popularization of high-tech in clinical applications will become the development trends in the field of OSA evaluation and diagnosis.
2.Four Weeks of HIIT Modulates Lactate-mediated Synaptic Plasticity to Improve Depressive-like Behavior in CUMS Rats
Yu-Mei HAN ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Chun-Hui BAO ; Jun-Sheng TIAN ; Shi ZHOU ; Huan XIANG ; Yong-Hong YANG
Progress in Biochemistry and Biophysics 2025;52(6):1499-1510
ObjectiveThis study aimed to investigate the effects of 4-week high-intensity interval training (HIIT) on synaptic plasticity in the prefrontal cortex (PFC) of rats exposed to chronic unpredictable mild stress (CUMS), and to explore its potential mechanisms. MethodsA total of 48 male Sprague-Dawley rats were randomly divided into 4 groups: control (C), model (M), control plus HIIT (HC), and model plus HIIT (HM). Rats in groups M and HM underwent 8 weeks of CUMS to establish depression-like behaviors, while groups HC and HM received HIIT intervention beginning from the 5th week for 4 consecutive weeks. The HIIT protocol consisted of repeated intervals of 3 min at high speed (85%-90% maximal training speed, Smax) alternated with one minute at low speed (50%-55% Smax), with 3 to 5 sets per session, conducted 5 d per week. Behavioral assessments and tail-vein blood lactate levels were measured at the end of the 4th and 8th weeks. After the intervention, rat PFC tissues were collected for Golgi staining to analyze synaptic morphology. Enzyme-linked immunosorbent assays (ELISA) were employed to detect brain-derived neurotrophic factor (BDNF), monocarboxylate transporter 1 (MCT1), lactate, and glutamate levels in the PFC, as well as serotonin (5-HT) levels in serum. Additionally, Western blot analysis was conducted to quantify the expression of synaptic plasticity-related proteins, including c-Fos, activity-regulated cytoskeleton-associated protein (Arc), and N-methyl-D-aspartate receptor 1 (NMDAR1). ResultsCompared to the control group (C), the CUMS-exposed rats (group M) exhibited significant reductions in sucrose preference rates, number of grid crossings, frequency of upright postures, and entries into and duration spent in open arms of the elevated plus maze, indicating marked depressive-like behaviors. Additionally, the group M showed significantly reduced dendritic spine density in the PFC, along with elevated levels of c-Fos, Arc, NMDAR1 protein expression, and increased concentrations of lactate and glutamate. Conversely, BDNF and MCT1 contents in the PFC and 5-HT levels in serum were significantly decreased. Following HIIT intervention, rats in the group HM displayed considerable improvement in behavioral indicators compared with the group M, accompanied by significant elevations in PFC MCT1 and lactate concentrations. Furthermore, HIIT notably normalized the expression levels of c-Fos, Arc, NMDAR1, as well as glutamate and BDNF contents in the PFC. Synaptic spine density also exhibited significant recovery. ConclusionFour weeks of HIIT intervention may alleviate depressive-like behaviors in CUMS rats by increasing lactate levels and reducing glutamate concentration in the PFC, thereby downregulating the overexpression of NMDAR, attenuating excitotoxicity, and enhancing synaptic plasticity.
3.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
4.Magnesium lithospermate B enhances the potential of human-induced pluripotent stem cell-derived cardiomyocytes for myocardial repair
Chengming FAN ; Kele QIN ; Daniel Chukwuemeka IROEGBU ; Kun XIANG ; Yibo GONG ; Qing GUAN ; Wenxiang WANG ; Jun PENG ; Jianjun GUO ; Xun WU ; Jinfu YANG
Chinese Medical Journal 2024;137(15):1857-1869
Background::We previously reported that activation of the cell cycle in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enhances their remuscularization capacity after human cardiac muscle patch transplantation in infarcted mouse hearts. Herein, we sought to identify the effect of magnesium lithospermate B (MLB) on hiPSC-CMs during myocardial repair using a myocardial infarction (MI) mouse model.Methods::In C57BL/6 mice, MI was surgically induced by ligating the left anterior descending coronary artery. The mice were randomly divided into five groups ( n = 10 per group); a MI group (treated with phosphate-buffered saline only), a hiPSC-CMs group, a MLB group, a hiPSC-CMs + MLB group, and a Sham operation group. Cardiac function and MLB therapeutic efficacy were evaluated by echocardiography and histochemical staining 4 weeks after surgery. To identify the associated mechanism, nuclear factor (NF)-κB p65 and intercellular cell adhesion molecule-1 (ICAM1) signals, cell adhesion ability, generation of reactive oxygen species, and rates of apoptosis were detected in human umbilical vein endothelial cells (HUVECs) and hiPSC-CMs. Results::After 4 weeks of transplantation, the number of cells that engrafted in the hiPSC-CMs + MLB group was about five times higher than those in the hiPSC-CMs group. Additionally, MLB treatment significantly reduced tohoku hospital pediatrics-1 (THP-1) cell adhesion, ICAM1 expression, NF-κB nuclear translocation, reactive oxygen species production, NF-κB p65 phosphorylation, and cell apoptosis in HUVECs cultured under hypoxia. Similarly, treatment with MLB significantly inhibited the apoptosis of hiPSC-CMs via enhancing signal transducer and activator of transcription 3 (STAT3) phosphorylation and B-cell lymphoma-2 (BCL2) expression, promoting STAT3 nuclear translocation, and downregulating BCL2-Associated X, dual specificity phosphatase 2 (DUSP2), and cleaved-caspase-3 expression under hypoxia. Furthermore, MLB significantly suppressed the production of malondialdehyde and lactate dehydrogenase and the reduction in glutathione content induced by hypoxia in both HUVECs and hiPSC-CMs in vitro. Conclusions::MLB significantly enhanced the potential of hiPSC-CMs in repairing injured myocardium by improving endothelial cell function via the NF-κB/ICAM1 pathway and inhibiting hiPSC-CMs apoptosis via the DUSP2/STAT3 pathway.
5.Research progress of mitochondrial quality control in methamphetamine-induced neurotoxicity
Qian-Yun NIE ; Wen-Juan DONG ; Gen-Meng YANG ; Li-Xiang QIN ; Chun-Hui SONG ; Li-Hua LI ; Shi-Jun HONG
Chinese Pharmacological Bulletin 2024;40(7):1201-1205
Methamphetamine abuse is a major public health problem in the world,and in recent years,methamphetamine is also the most abused synthetic drug in China.The neurotoxic or addiction mechanism of methamphetamine has not been fully clarified,and there is still a lack of specific withdrawal methods and drugs for methamphetamine abuse.Mitochondria are not on-ly the organelles to which methamphetamine directly produces toxic effects,but also participate in regulating the neurotoxic damage process of methamphetamine.Mitochondrial quality is the regulatory basis for maintaining mitochondrial homeostasis and is regulated by three main mechanisms,which are mitochon-drial biogenesis,mitochondrial dynamic,and mitophagy.This review summarizes the research progress of mitochondrial quality control in methamphetamine-induced neurotoxicity,which may provide theoretical support for further research on the mechanism of methamphetamine neurotoxicity and development the mito-chondria-targeting drugs.
6.Research progress of NLRP3 inflammasome inhibitors
Chen-Guang LI ; Feng-Yi MAI ; Jing-Rong LIANG ; Wen-Tao YANG ; Jie GUO ; Jun-Xiang SHU ; Li-Zu XIAO
Chinese Pharmacological Bulletin 2024;40(10):1801-1808
NLRP3 can recruit proteins such as ASC and pro-caspase1 to form NLRP3 inflammasomes after being stimulated by pathogen and danger signals in vivo,and then induce pyropto-sis and promote the inflammatory reactions to maintain the home-ostasis.However,the overactivation of NLRP3 inflammasomes is closely related to many inflammatory and autoimmune diseases in humans.Targeted inhibition of NLRP3 inflammasomes can sig-nificantly inhibit inflammation and alleviate the relative symp-toms.Therefore,it is an important research direction for treating diseases of NLRP3 inflammasome that searching for effective in-hibitors targeting NLRP3 inflammasome activation and achieving clinical transformation.This review summarizes the latest re-search progress based on the sources of NLRP3 inflammasome inhibitors.
7.Study on inhibitory effect of alisol B on non-small cell lung cancer based on network pharmacology and its mechanism
Liu-Yan XIANG ; Wen-Xuan WANG ; Si-Meng GU ; Xiao-Qian ZHANG ; Lu-Yao LI ; Yu-Qian LI ; Yuan-Ru WANG ; Qi-Qi LEI ; Xue YANG ; Ya-Jun CAO ; Xue-Jun LI
Chinese Pharmacological Bulletin 2024;40(12):2375-2384
Aim To explore the potential genes and mechanism of alisol B in the treatment of non-small cell lung cancer(NSCLC).Methods The proliferation and migration of NSCLC cells were detected by CCK-8 and Transwell.Genes of NSCLC and alisol B were col-lected through TCGA and compound gene prediction database,and their intersection genes were obtained.The network of protein-protein interaction(PPI)was constructed by using String database,and the top 20 key nodes were screened out,and the prognosis-related proteins related to the prognosis of NSCLC were screened out by using R language,and the intersection of them was obtained.The potential mechanism of ali-sol B on NSCLC was explored by KEGG and GO en-richment analysis and the relationship between related genes and immune cells,which was verified by cell-lev-el experiments.Results Alisol B inhibited the cell activity and migration ability of NSCLC cells.Five im-portant genes were identified by network pharmacologi-cal analysis:CCNE1,CDK1,COL1A1,COL1A2 and COL3A1.The results of cell experiment showed that al-isol B down-regulated the expression of Cyclin E1,CDK1 and COL1A2 in NSCLC cells.In addition,alisol B could inhibit the expression of COL1A2 and M2 macrophage marker CD206 in macrophages.Conclu-sions Alisol B may inhibit the proliferation of tumor cells by down-regulating CDK1 and Cyclin E1,and may affect the function of macrophages by inhibiting COL1A2,thus regulating the tumor immune microenvi-ronment and inhibiting NSCLC.
8.Design of intelligent horizontal rotating cell culture device
Li-Fei YANG ; Ye-Rong QIAN ; Jun-Xi XIANG ; Ai-Hua SHI ; Xin LIU ; Sha-Sha WEI ; Yi LYU ; Peng LIU
Chinese Medical Equipment Journal 2024;45(9):41-45
Objective To develop an intelligent horizontal rotating cell culture device with high modularity,easy operation,easy disinfection,low cost and high stability.Methods The cell culture device consisted of a rotating culture module,a dirve module,a control module and control software,with the shells of all the modules being manufactured by 3D printing.The rotating culture module was composed of a tubular electrospun scaffold,a cell culture chamber,a magnetic coupling rotor and polypropylene pipeline;the drive module was made up of a N20 reduction motor and a magnetic coupling rotor;the control module included an ESP-8266 chip and a printed circuit board;the control software was developed with Blinker IoT platform and C++language.The device was used to culture human intrahepatic bile duct epithelial cells to verify its effects.Results Light microscopy and scanning electron microscopy images showed that a uniform and continuous cell layer was formed on the surface of the tubular electrospun scaffold.Conclusion The intelligent horizontal rotating cell culture device achieves uniform growth of cells on the inner surface of tubular electrospun scaffolds,and can be used as an effective platform for cell culture on tubular scaffolds.[Chinese Medical Equipment Journal,2024,45(9):41-45]
9.Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases
Li XIANG ; Chen RU-YI ; Shi JIN-JIN ; Li CHANG-YUN ; Liu YAN-JUN ; Gao CHANG ; Gao MING-RONG ; Zhang SHUN ; Lu JIAN-FEI ; Cao JIA-FENG ; Yang GUAN-JUN ; Chen JIONG
Journal of Pharmaceutical Analysis 2024;14(9):1282-1300
Jumonji domain-containing protein D3(JMJD3)is a 2-oxoglutarate-dependent dioxygenase that specif-ically removes transcriptional repression marks di-and tri-methylated groups from lysine 27 on histone 3(H3K27me2/3).The erasure of these marks leads to the activation of some associated genes,thereby influencing various biological processes,such as development,differentiation,and immune response.However,comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking.Here,we provide a comprehensive overview of JMJD3,including its structure,functions,and involvement in inflammatory pathways.In addition,we summarize the evidence supporting JMJD3's role in several inflammatory diseases,as well as the potential therapeutic applications of JMJD3 inhibitors.Additionally,we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
10.Effect of galvanic vestibular stimulation on stroke patients with lateropulsion
Xiang GONG ; Menghuan WANG ; Cunshu WU ; Junwen CHEN ; Yue XIAO ; Yun YANG ; Wanting SUN ; Jun LU ; Guangxu XU
Chinese Journal of Rehabilitation Theory and Practice 2024;30(2):210-216
ObjectiveTo investigate the effect of galvanic vestibular stimulation on stroke patients with lateropulsion. MethodsFrom February to October, 2023, 30 stroke patients with lateropulsion in the First Affiliated Hospital of Nanjing Medical University were divided into control group (n = 15) and experimental group (n = 15) randomly. The control group received routine rehabilitation and sham galvanic vestibular stimulation, and the experimental group received routine rehabilitation and true galvanic vestibular stimulation, for two weeks. They were assessed with Scale for Contraversive Pushing (SCP), subjective visual vertical (SVV), Line Cancellation Test (LCT), Star Cancellation Test (SCT), Berg Balance Scale (BBS), Holden Functional Ambulation Category (FAC) and Barthel Index (BI) before and after treatment. ResultsAll the indexes improved in both groups after intervention (|t| > 2.461, Z > 3.000, P < 0.05), except the SVV orientation, SVV certainty and SCT in the control group; while the SCP, SVV certainty, LCT and FAC were better in the experimental group than in the control group (|t| > 2.189, Z = -2.862, P < 0.05), and the differences before and after intervention were better in the experimental group than in the control group (|t| > 2.382, P < 0.05), except LCT. SCP was correlated with SVV orientation, SVV certainty, SCT, BBS, BI and FAC (|r| > 0.381, P < 0.05). ConclusionGalvanic vestibular stimulation can improve the lateropulsion, balance, walking function and activities of daily living in stroke patients, which may be related to improvement for spatial cognitive function, especially vertical perception.

Result Analysis
Print
Save
E-mail