1.Genetic Correlation and Mendelian Randomization Analysis Revealed an Unidirectional Causal Relationship Between Left Caudal Middle Frontal Surface Area and Cigarette Consumption
Hongcheng XIE ; Anlin WANG ; Minglan YU ; Tingting WANG ; Xuemei LIANG ; Rongfang HE ; Chaohua HUANG ; Wei LEI ; Jing CHEN ; Youguo TAN ; Kezhi LIU ; Bo XIANG
Psychiatry Investigation 2025;22(3):279-286
Objective:
Previous studies have discovered a correlation between cigarette smoking and cortical thickness and surface area, but the causal relationship remains unclear. The objective of this investigation is to scrutinize the causal association between them.
Methods:
To derive summary statistics from a genome-wide association study (GWAS) on cortical thickness, surface area, and four smoking behaviors: 1) age of initiation of regular smoking (AgeSmk); 2) smoking initiation (SmkInit); 3) smoking cessation (SmkCes); 4) cigarettes per day (CigDay). Linkage disequilibrium score regression (LDSC) was employed to examine genetic association analysis. Furthermore, for traits with significant genetic associations, Mendelian randomization (MR) analyses were conducted.
Results:
The LDSC analysis revealed nominal genetic correlations between AgeSmk and right precentral surface area, left caudal anterior cingulate surface area, left cuneus surface area, left inferior parietal surface area, and right caudal anterior cingulate thickness, as well as between CigDay and left caudal middle frontal surface area, between SmkCes and left entorhinal thickness, and between SmkInit and left rostral anterior cingulate surface area, right rostral anterior cingulate thickness, and right superior frontal thickness (rg=-0.36–0.29, p<0.05). MR analysis showed a unidirectional causal association between left caudal middle frontal surface area and CigDay (βIVW=0.056, pBonferroni=2×10-4).
Conclusion
Left caudal middle frontal surface area has the potential to serve as a significant predictor of smoking behavior.
2.Genetic Correlation and Mendelian Randomization Analysis Revealed an Unidirectional Causal Relationship Between Left Caudal Middle Frontal Surface Area and Cigarette Consumption
Hongcheng XIE ; Anlin WANG ; Minglan YU ; Tingting WANG ; Xuemei LIANG ; Rongfang HE ; Chaohua HUANG ; Wei LEI ; Jing CHEN ; Youguo TAN ; Kezhi LIU ; Bo XIANG
Psychiatry Investigation 2025;22(3):279-286
Objective:
Previous studies have discovered a correlation between cigarette smoking and cortical thickness and surface area, but the causal relationship remains unclear. The objective of this investigation is to scrutinize the causal association between them.
Methods:
To derive summary statistics from a genome-wide association study (GWAS) on cortical thickness, surface area, and four smoking behaviors: 1) age of initiation of regular smoking (AgeSmk); 2) smoking initiation (SmkInit); 3) smoking cessation (SmkCes); 4) cigarettes per day (CigDay). Linkage disequilibrium score regression (LDSC) was employed to examine genetic association analysis. Furthermore, for traits with significant genetic associations, Mendelian randomization (MR) analyses were conducted.
Results:
The LDSC analysis revealed nominal genetic correlations between AgeSmk and right precentral surface area, left caudal anterior cingulate surface area, left cuneus surface area, left inferior parietal surface area, and right caudal anterior cingulate thickness, as well as between CigDay and left caudal middle frontal surface area, between SmkCes and left entorhinal thickness, and between SmkInit and left rostral anterior cingulate surface area, right rostral anterior cingulate thickness, and right superior frontal thickness (rg=-0.36–0.29, p<0.05). MR analysis showed a unidirectional causal association between left caudal middle frontal surface area and CigDay (βIVW=0.056, pBonferroni=2×10-4).
Conclusion
Left caudal middle frontal surface area has the potential to serve as a significant predictor of smoking behavior.
3.Genetic Correlation and Mendelian Randomization Analysis Revealed an Unidirectional Causal Relationship Between Left Caudal Middle Frontal Surface Area and Cigarette Consumption
Hongcheng XIE ; Anlin WANG ; Minglan YU ; Tingting WANG ; Xuemei LIANG ; Rongfang HE ; Chaohua HUANG ; Wei LEI ; Jing CHEN ; Youguo TAN ; Kezhi LIU ; Bo XIANG
Psychiatry Investigation 2025;22(3):279-286
Objective:
Previous studies have discovered a correlation between cigarette smoking and cortical thickness and surface area, but the causal relationship remains unclear. The objective of this investigation is to scrutinize the causal association between them.
Methods:
To derive summary statistics from a genome-wide association study (GWAS) on cortical thickness, surface area, and four smoking behaviors: 1) age of initiation of regular smoking (AgeSmk); 2) smoking initiation (SmkInit); 3) smoking cessation (SmkCes); 4) cigarettes per day (CigDay). Linkage disequilibrium score regression (LDSC) was employed to examine genetic association analysis. Furthermore, for traits with significant genetic associations, Mendelian randomization (MR) analyses were conducted.
Results:
The LDSC analysis revealed nominal genetic correlations between AgeSmk and right precentral surface area, left caudal anterior cingulate surface area, left cuneus surface area, left inferior parietal surface area, and right caudal anterior cingulate thickness, as well as between CigDay and left caudal middle frontal surface area, between SmkCes and left entorhinal thickness, and between SmkInit and left rostral anterior cingulate surface area, right rostral anterior cingulate thickness, and right superior frontal thickness (rg=-0.36–0.29, p<0.05). MR analysis showed a unidirectional causal association between left caudal middle frontal surface area and CigDay (βIVW=0.056, pBonferroni=2×10-4).
Conclusion
Left caudal middle frontal surface area has the potential to serve as a significant predictor of smoking behavior.
4.Genetic Correlation and Mendelian Randomization Analysis Revealed an Unidirectional Causal Relationship Between Left Caudal Middle Frontal Surface Area and Cigarette Consumption
Hongcheng XIE ; Anlin WANG ; Minglan YU ; Tingting WANG ; Xuemei LIANG ; Rongfang HE ; Chaohua HUANG ; Wei LEI ; Jing CHEN ; Youguo TAN ; Kezhi LIU ; Bo XIANG
Psychiatry Investigation 2025;22(3):279-286
Objective:
Previous studies have discovered a correlation between cigarette smoking and cortical thickness and surface area, but the causal relationship remains unclear. The objective of this investigation is to scrutinize the causal association between them.
Methods:
To derive summary statistics from a genome-wide association study (GWAS) on cortical thickness, surface area, and four smoking behaviors: 1) age of initiation of regular smoking (AgeSmk); 2) smoking initiation (SmkInit); 3) smoking cessation (SmkCes); 4) cigarettes per day (CigDay). Linkage disequilibrium score regression (LDSC) was employed to examine genetic association analysis. Furthermore, for traits with significant genetic associations, Mendelian randomization (MR) analyses were conducted.
Results:
The LDSC analysis revealed nominal genetic correlations between AgeSmk and right precentral surface area, left caudal anterior cingulate surface area, left cuneus surface area, left inferior parietal surface area, and right caudal anterior cingulate thickness, as well as between CigDay and left caudal middle frontal surface area, between SmkCes and left entorhinal thickness, and between SmkInit and left rostral anterior cingulate surface area, right rostral anterior cingulate thickness, and right superior frontal thickness (rg=-0.36–0.29, p<0.05). MR analysis showed a unidirectional causal association between left caudal middle frontal surface area and CigDay (βIVW=0.056, pBonferroni=2×10-4).
Conclusion
Left caudal middle frontal surface area has the potential to serve as a significant predictor of smoking behavior.
5.Genetic Correlation and Mendelian Randomization Analysis Revealed an Unidirectional Causal Relationship Between Left Caudal Middle Frontal Surface Area and Cigarette Consumption
Hongcheng XIE ; Anlin WANG ; Minglan YU ; Tingting WANG ; Xuemei LIANG ; Rongfang HE ; Chaohua HUANG ; Wei LEI ; Jing CHEN ; Youguo TAN ; Kezhi LIU ; Bo XIANG
Psychiatry Investigation 2025;22(3):279-286
Objective:
Previous studies have discovered a correlation between cigarette smoking and cortical thickness and surface area, but the causal relationship remains unclear. The objective of this investigation is to scrutinize the causal association between them.
Methods:
To derive summary statistics from a genome-wide association study (GWAS) on cortical thickness, surface area, and four smoking behaviors: 1) age of initiation of regular smoking (AgeSmk); 2) smoking initiation (SmkInit); 3) smoking cessation (SmkCes); 4) cigarettes per day (CigDay). Linkage disequilibrium score regression (LDSC) was employed to examine genetic association analysis. Furthermore, for traits with significant genetic associations, Mendelian randomization (MR) analyses were conducted.
Results:
The LDSC analysis revealed nominal genetic correlations between AgeSmk and right precentral surface area, left caudal anterior cingulate surface area, left cuneus surface area, left inferior parietal surface area, and right caudal anterior cingulate thickness, as well as between CigDay and left caudal middle frontal surface area, between SmkCes and left entorhinal thickness, and between SmkInit and left rostral anterior cingulate surface area, right rostral anterior cingulate thickness, and right superior frontal thickness (rg=-0.36–0.29, p<0.05). MR analysis showed a unidirectional causal association between left caudal middle frontal surface area and CigDay (βIVW=0.056, pBonferroni=2×10-4).
Conclusion
Left caudal middle frontal surface area has the potential to serve as a significant predictor of smoking behavior.
6.Metabolomics and pharmacokinetics of Corni Fructus in ameliorating myocardial ischemic injury.
Xiang-Feng LIU ; Yu WU ; Chao-Yan YANG ; Hua-Wei LIAO ; Yan-Fen CHEN ; Xin HE ; Ying-Fang WANG ; Jin-Ru LIANG
China Journal of Chinese Materia Medica 2025;50(5):1363-1376
This study aims to investigate the ameliorating effect of Corni Fructus(CF) on the myocardial ischemic injury and the pharmacokinetic properties of characteristic components of CF. The mouse model of isoproterenol-induced myocardial ischemia was established and administrated with the aqueous extract of CF. The general efficacy of CF in ameliorating the myocardial ischemic injury was evaluated based on the cardiac histopathology and the levels of myocardial injury markers: creatine kinase isoenzyme(CK-MB) and cardiac troponin I(cTn-I). The metabolomics analysis was carried out for the heart and serum samples of mice to screen the biomarkers of CF in ameliorating the myocardial ischemic injury and then the predicted biomarkers were submitted to metabolic pathway enrichment. The pharmacokinetic analysis was performed for morroniside, loganin, and cornuside Ⅰ in mouse heart and serum samples to obtain the pharmacokinetic parameters of these components. The pharmacokinetic parameters were then integrated on the basis of self-defined weighting coefficients to simulate an integrated pharmacokinetic profile of CF iridoid glycosides in the heart and serum of the mouse model of myocardial ischemia. The results indicated that CF reduced the pathological damage to cardiac cells and tissue(hematoxylin-eosin staining) and lowered the levels of CK-MB and cTn-I in the serum of the mouse model of myocardial ischemia(P<0.01). Metabolomics analysis screed out 31 endogenous metabolites in the heart and 35 in the serum as biomarkers of CF in ameliorating the myocardial ischemic injury. These biomarkers were altered by modeling and restored by CF. Six metabolic pathways in the heart and 5 in the serum were enriched based on these metabolic markers. The main integrated pharmacokinetic parameters of CF iridoid glycosides were T_(max)=1 h, t_(1/2)=(1.52±0.05) h in the heart and T_(max)=1 h, t_(1/2)=(1.56±0.50) h in the serum. Both concentration-time curves showed a double-peak phenomenon. In conclusion, CF demonstrated the cardioprotective effect by regulating metabolic pathways such as taurine and hypotaurine metabolism, and pantothenic acid and coenzyme A biosynthesis. The integrated pharmacokinetics reflect the general pharmacokinetic properties of characteristic components in CF.
Animals
;
Cornus/chemistry*
;
Mice
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Myocardial Ischemia/metabolism*
;
Humans
;
Troponin I/metabolism*
;
Myocardium/pathology*
;
Disease Models, Animal
;
Biomarkers/metabolism*
;
Creatine Kinase, MB Form/metabolism*
7.Erratum: Author Correction: Targeting of AUF1 to vascular endothelial cells as a novel anti-aging therapy.
Jian HE ; Ya-Feng JIANG ; Liu LIANG ; Du-Jin WANG ; Wen-Xin WEI ; Pan-Pan JI ; Yao-Chan HUANG ; Hui SONG ; Xiao-Ling LU ; Yong-Xiang ZHAO
Journal of Geriatric Cardiology 2025;22(9):834-834
[This corrects the article DOI: 10.11909/j.issn.1671-5411.2017.08.005.].
8.The application of surgical robots in head and neck tumors.
Xiaoming HUANG ; Qingqing HE ; Dan WANG ; Jiqi YAN ; Yu WANG ; Xuekui LIU ; Chuanming ZHENG ; Yan XU ; Yanxia BAI ; Chao LI ; Ronghao SUN ; Xudong WANG ; Mingliang XIANG ; Yan WANG ; Xiang LU ; Lei TAO ; Ming SONG ; Qinlong LIANG ; Xiaomeng ZHANG ; Yuan HU ; Renhui CHEN ; Zhaohui LIU ; Faya LIANG ; Ping HAN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(11):1001-1008
9.International clinical practice guideline on the use of traditional Chinese medicine for functional dyspepsia (2025).
Sheng-Sheng ZHANG ; Lu-Qing ZHAO ; Xiao-Hua HOU ; Zhao-Xiang BIAN ; Jian-Hua ZHENG ; Hai-He TIAN ; Guan-Hu YANG ; Won-Sook HONG ; Yu-Ying HE ; Li LIU ; Hong SHEN ; Yan-Ping LI ; Sheng XIE ; Jin SHU ; Bin-Fang ZENG ; Jun-Xiang LI ; Zhen LIU ; Zheng-Hua XIAO ; Jing-Dong XIAO ; Pei-Yong ZHENG ; Shao-Gang HUANG ; Sheng-Liang CHEN ; Gui-Jun FEI
Journal of Integrative Medicine 2025;23(5):502-518
Functional dyspepsia (FD), characterized by persistent or recurrent dyspeptic symptoms without identifiable organic, systemic or metabolic causes, is an increasingly recognized global health issue. The objective of this guideline is to equip clinicians and nursing professionals with evidence-based strategies for the management and treatment of adult patients with FD using traditional Chinese medicine (TCM). The Guideline Development Group consulted existing TCM consensus documents on FD and convened a panel of 35 clinicians to generate initial clinical queries. To address these queries, a systematic literature search was conducted across PubMed, EMBASE, the Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP Database, China Biology Medicine (SinoMed) Database, Wanfang Database, Traditional Medicine Research Data Expanded (TMRDE), and the Traditional Chinese Medical Literature Analysis and Retrieval System (TCMLARS). The evidence from the literature was critically appraised using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. The strength of the recommendations was ascertained through a consensus-building process involving TCM and allopathic medicine experts, methodologists, pharmacologists, nursing specialists, and health economists, leveraging their collective expertise and empirical knowledge. The guideline comprises a total of 43 evidence-informed recommendations that span a range of clinical aspects, including the pathogenesis according to TCM, diagnostic approaches, therapeutic interventions, efficacy assessments, and prognostic considerations. Please cite this article as: Zhang SS, Zhao LQ, Hou XH, Bian ZX, Zheng JH, Tian HH, Yang GH, Hong WS, He YY, Liu L, Shen H, Li YP, Xie S, Shu J, Zeng BF, Li JX, Liu Z, Xiao ZH, Xiao JD, Zheng PY, Huang SG, Chen SL, Fei GJ. International clinical practice guideline on the use of traditional Chinese medicine for functional dyspepsia (2025). J Integr Med. 2025; 23(5):502-518.
Dyspepsia/drug therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Practice Guidelines as Topic
;
Drugs, Chinese Herbal/therapeutic use*
10.Individualized prediction model of tacrolimus dose/weight-adjusted trough concentration based on machine learning approach
Hui Jiang ; Liang Tang ; Xin Wang ; Fan Jiang ; Deguang Wang ; Xiaofeng Lan ; Xiang Xie
Acta Universitatis Medicinalis Anhui 2025;60(2):344-350
Objective:
To utilize machine learning(ML) algorithms to develop accurate and effective prediction models for TAC dose/weight-adjusted trough concentration(C0/D).
Methods:
Data were collected on 264 TAC blood concentration monitoring data from 72 patients undergoing kidney transplantation. The effects of population statistical data, clinical features, combined medication, and ultrasound feature parameters on TAC C0/D were analyzed. Features with a significance level less than 0.05 in the univariate analysis of TAC C0/D were selected for inclusion in the random forest(RF) algorithm to identify significant features. These features were interpreted using partial dependency plots. Five ML algorithms, including RF, support vector regression(SVR), extreme gradient boosting(XGBoost), decision trees(DT) and artificial neural networks(ANN), were employed to establish the TAC C0/D prediction model. Hyper-parameter tuning was performed on the RF model that performed the best.
Results :
Ten characteristic variables with importance scores>5 were retained and included in the ML model: transglutaminase, red blood cell count, blood urea nitrogen, weight, serum creatinine, renal segmental arterial resistance index, renal aortic resistance index, hematocrit, renal pelvic Young′s modulus value, and time after transplantation. The partial dependence plots showed that all 10 important variables screened were positively correlated with TAC C0/D. The tuned RF model outperformed the other models with aR2of 0.81, aRMSEof 43.93, and aMAEof 29.97.
Conclusion
The ML models demonstrate good performance in predicting TAC C0/D and provide innovative interpretations using partial dependence plot. The optimized RF model shows optimal performance and offers a novel tool for individualized medication adjustment for TAC in renal transplant patients.


Result Analysis
Print
Save
E-mail