1.Expression of IP3R2 and RYR2 mediated Ca2+signals in a mouse model of delayed encephalopathy after acute carbon monoxide poisoning
Jili ZHAO ; Tianyu MENG ; Yarong YUE ; Xin ZHANG ; Wenqian DU ; Xinyu ZHANG ; Hui XUE ; Wenping XIANG
Chinese Journal of Tissue Engineering Research 2025;29(2):254-261
BACKGROUND:Ca2+expression in astrocytes has been found to be closely related to cognitive function,and the Ca2+signaling pathway regulated by inositol 1,4,5-trisphosphate receptors(IP3R2)and ryanodine receptor(RYR)2 receptors has become a hot spot in the study of cognitive disorder-related diseases. OBJECTIVE:To investigate the expression of Ca2+signals mediated by IP3R2 and RYR2 in hippocampal astrocytes in animal models of delayed encephalopathy after acute carbon monoxide poisoning,and to explore the possible pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning. METHODS:C57BL mice with qualified cognitive function were selected by Morris water maze experiment and randomly divided into control group and experimental group.An animal model of delayed encephalopathy after acute carbon monoxide poisoning was established by static carbon monoxide inhalation in the experimental group,and the same amount of air was inhaled in the control group.Behavioral and neuronal changes,astrocyte specific marker glial fibrillary acidic protein,IP3R2,RYR2 receptor and Ca2+concentration in astrocytes of the two groups were detected using Morris water maze,hematoxylin-eosin staining,western blot,immunofluorescence double labeling and Ca2+fluorescence probe at 21 days after modeling. RESULTS AND CONCLUSION:In the Morris water maze,the escape latency of the experimental group was significantly longer than that of the control group(P<0.05).Hematoxylin-eosin staining results showed that in the experimental group,the number of hippocampal pyramidal cells decreased,the cell structure was disordered,and the nucleus was broken and dissolved.Immunofluorescence results showed that IP3R2 and RYR2 were co-expressed with glial fibrillary acidic protein in the hippocampus,and the expressions of IP3R2,RYR2 and glial fibrillary acidic protein were up-regulated in the hippocampus of the experimental group(P<0.05).Western blot analysis showed that the expressions of IP3R2,RYR2,and glial fibrillary acidic protein in the hippocampus of the experimental group were increased(P<0.05).Ca2+concentration in hippocampal astrocytes increased significantly in the experimental group(P<0.05).To conclude,astrocytes may affect Ca2+signals by mediating IP3R2 and RYR2 receptors,then impair the cognitive function of mice with carbon monoxide poisoning,and eventually lead to delayed encephalopathy after acute carbon monoxide poisoning.
2.Antidepressant effects of Ziziphi Spinosae Semen extract on depressive-like behaviors in sleep deprivation rats based on integrated serum metabolomics and gut microbiota.
Liang-Lei SONG ; Ya-Yu SUN ; Ze-Jia NIU ; Jia-Ying LIU ; Xiang-Ping PEI ; Yan YAN ; Chen-Hui DU
China Journal of Chinese Materia Medica 2025;50(16):4510-4524
Based on serum metabolomics and gut microbiota technology, this study explores the effects and mechanisms of the water extract of Ziziphi Spinosae Semen(SZRW) and the petroleum ether extract of Ziziphi Spinosae Semen(SZRO) in improving depressive-like behaviors induced by sleep deprivation. A modified multi-platform water environment method was employed to establish a rat model of sleep deprivation. Depressive-like behaviors in rats were assessed through the sucrose preference test and forced swim test. The expression of barrier proteins, such as Occludin, in the colon was determined by immunofluorescence. UPLC-Q-Orbitrap MS was utilized to analyze the serum metabolic profiles of sleep-deprived rats, screen for differential metabolites, and analyze metabolic pathways. The diversity of the gut microbiota was detected using 16S rRNA gene sequencing. Spearman correlation coefficient analysis was conducted to assess the correlation between differential metabolites and gut microbiota. The results indicated that SZRO significantly increased the sucrose preference index and decreased the immobility time in the forced swim test in rats. A total of 34 differential metabolites were identified through serum metabolomics. SZRW and SZRO shared five metabolic pathways, including phenylalanine metabolism. SZRW uniquely featured taurine and hypotaurine metabolism, while SZRO uniquely featured linoleic acid metabolism and tyrosine metabolism. Correlation analysis revealed that SZRW could upregulate the abundance of Bilophila, promoting the production of indole-3-propionic acid and subsequently upregulating the expression levels of intestinal tight junction proteins such as ZO-1, Occludin, and Claudin-1. SZRO could indirectly influence metabolic pathways such as arginine metabolism and linoleic acid metabolism by upregulating the abundance of gut microbiota such as Coprococcus and Eubacterium species. Both SZRW and SZRO can regulate endogenous metabolism, including amino acids, energy, and lipids, alter the gut microbiota microecology, and improve depressive-like behaviors. SZRO demonstrated superior effects in regulating metabolic pathways and gut microbiota structure compared to SZRW. The findings of this study provide a scientific basis for elucidating the pharmacodynamic material basis of Ziziphi Spinosae Semen.
Animals
;
Rats
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/blood*
;
Rats, Sprague-Dawley
;
Sleep Deprivation/complications*
;
Ziziphus/chemistry*
;
Antidepressive Agents/administration & dosage*
;
Behavior, Animal/drug effects*
;
Humans
3.Erratum: Author Correction: Targeting of AUF1 to vascular endothelial cells as a novel anti-aging therapy.
Jian HE ; Ya-Feng JIANG ; Liu LIANG ; Du-Jin WANG ; Wen-Xin WEI ; Pan-Pan JI ; Yao-Chan HUANG ; Hui SONG ; Xiao-Ling LU ; Yong-Xiang ZHAO
Journal of Geriatric Cardiology 2025;22(9):834-834
[This corrects the article DOI: 10.11909/j.issn.1671-5411.2017.08.005.].
4.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
5.Link Brain-Wide Projectome to Neuronal Dynamics in the Mouse Brain.
Xiang LI ; Yun DU ; Jiang-Feng HUANG ; Wen-Wei LI ; Wei SONG ; Ruo-Nan FAN ; Hua ZHOU ; Tao JIANG ; Chang-Geng LU ; Zhuang GUAN ; Xiao-Fei WANG ; Hui GONG ; Xiang-Ning LI ; Anan LI ; Ling FU ; Yan-Gang SUN
Neuroscience Bulletin 2024;40(11):1621-1634
Knowledge about the neuronal dynamics and the projectome are both essential for understanding how the neuronal network functions in concert. However, it remains challenging to obtain the neural activity and the brain-wide projectome for the same neurons, especially for neurons in subcortical brain regions. Here, by combining in vivo microscopy and high-definition fluorescence micro-optical sectioning tomography, we have developed strategies for mapping the brain-wide projectome of functionally relevant neurons in the somatosensory cortex, the dorsal hippocampus, and the substantia nigra pars compacta. More importantly, we also developed a strategy to achieve acquiring the neural dynamic and brain-wide projectome of the molecularly defined neuronal subtype. The strategies developed in this study solved the essential problem of linking brain-wide projectome to neuronal dynamics for neurons in subcortical structures and provided valuable approaches for understanding how the brain is functionally organized via intricate connectivity patterns.
Animals
;
Neurons/physiology*
;
Mice
;
Brain/physiology*
;
Mice, Inbred C57BL
;
Somatosensory Cortex/physiology*
;
Neural Pathways/physiology*
;
Hippocampus/physiology*
;
Mice, Transgenic
;
Male
;
Brain Mapping
;
Nerve Net/physiology*
;
Substantia Nigra/physiology*
;
Tomography, Optical/methods*
6.Progress on targets and therapeutic drugs for pancreatic cancer
Hong YANG ; Wan LI ; Sha LI ; Li-wen REN ; Yi-zhi ZHANG ; Yi-hui YANG ; Bin-bin GE ; Xiang-jin ZHENG ; Jin-yi LIU ; Sen ZHANG ; Guan-hua DU ; Jin-hua WANG
Acta Pharmaceutica Sinica 2023;58(1):9-20
Pancreatic cancer is a highly malignant tumor with a poor prognosis. It is very hard to treat pancreatic cancers for their high heterogeneity, complex tumor microenvironment, and drug resistance. Currently, gemcitabine plus nab-paclitaxel, capecitabine and FOLFIRINOX are standard chemotherapy for resectable or advanced metastatic pancreatic cancer. Considering the limited efficacy and toxic side effects of chemotherapy, targeted and immune drugs have gradually attracted attention and made some progress. In this article, we systematically reviewed the chemotherapeutic drugs, targets and related targeted drugs, and immunotherapy drugs for pancreatic cancer.
7.Chemical constituents of diterpenoids from Boswellia carterii.
Rong-Ye WANG ; Hui XIA ; Yong-Xiang WANG ; Hao HUANG ; Bo-Kai WANG ; Meng DU ; Yue-Lin SONG ; Yun-Fang ZHAO ; Jiao ZHENG ; Hui-Xia HUO ; Jun LI
China Journal of Chinese Materia Medica 2023;48(9):2464-2470
This paper explored the chemical constituents of Boswellia carterii by column chromatography on silica gel, Sephadex LH-20, ODS column chromatography, and semi-preparative HPLC. The structures of the compounds were identified by physicochemical properties and spectroscopic data such as infrared radiation(IR), ultra violet(UV), mass spectrometry(MS), and nuclear magnetic resonance(NMR). Seven diterpenoids were isolated and purified from n-hexane of B. carterii. The isolates were identified as(1S,3E,7E,11R,12R)-11-hydroxy-1-isopropyl-4,8,12-trimethyl-15-oxabicyclo[10.2.1]pentadeca-3,7-dien-5-one(1),(1R,3S,4R,7E,11E)-4,8,12,15,15-pentamethyl-14-oxabicyclo[11.2.1]hexadeca-7,11-dien-4-ol(2), incensole(3),(-)-(R)-nephthenol(4), euphraticanoid F(5), dilospirane B(6), and dictyotin C(7). Among them, compounds 1 and 2 were new and their absolute configurations were determined by comparison of the calculated and experimental electronic circular dichroisms(ECDs). Compounds 6 and 7 were obtained from B. carterii for the first time.
Molecular Structure
;
Boswellia/chemistry*
;
Diterpenes/chemistry*
;
Mass Spectrometry
8. Tanshinone IIA promotes reverse cholesterol transport to improve atherosclerosis
Yi-Fan ZHANG ; Min DU ; Jia-Rou WANG ; Si-Jin LI ; Xiao-Teng FENG ; Ping LIU ; Xiang-Hui HAN
Chinese Pharmacological Bulletin 2023;39(10):1835-1839
Aim To explore the effect of tanshinone II A (Tan II A) on reverse cholesterol transport in atherosclerosis model mice and RAW264. 7 cells and the underlying mechanism. Methods Thirty-two male LDLR -/- mice were randomly divided into four groups. These mice were fed with normal diet or high fat diet for 12 weeks. The control group and model group were given normal saline. Tan II A group and atorvastatin group were given Tan II A solution and atorvastatin solution for 12 weeks. RAW264. 7 cells were induced with oxidized low-density lipoprotein (ox-LDL) 100 mg • L-
9. Treatment advice of small molecule antiviral drugs for elderly COVID-19
Min PAN ; Shuang CHANG ; Xiao-Xia FENG ; Guang-He FEI ; Jia-Bin LI ; Hua WANG ; Du-Juan XU ; Chang-Hui WANG ; Yan SUN ; Xiao-Yun FAN ; Tian-Jing ZHANG ; Wei WEI ; Ling-Ling ZHANG ; Jim LI ; Fei-Hu CHEN ; Xiao-Ming MENG ; Hong-Mei ZHAO ; Min DAI ; Yi XIANG ; Meng-Shu CAO ; Xiao-Yang CHEN ; Xian-Wei YE ; Xiao-Wen HU ; Ling JIANG ; Yong-Zhong WANG ; Hao LIU ; Hai-Tang XIE ; Ping FANG ; Zhen-Dong QIAN ; Chao TANG ; Gang YANG ; Xiao-Bao TENG ; Chao-Xia QIAN ; Guo-Zheng DING
Chinese Pharmacological Bulletin 2023;39(3):425-430
COVID-19 has been prevalent for three years. The virulence of SARS-CoV-2 is weaken as it mutates continuously. However, elderly patients, especially those with underlying diseases, are still at high risk of developing severe infections. With the continuous study of the molecular structure and pathogenic mechanism of SARS-CoV-2, antiviral drugs for COVID-19 have been successively marketed, and these anti-SARS-CoV-2 drugs can effectively reduce the severe rate and mortality of elderly patients. This article reviews the mechanism, clinical medication regimens, drug interactions and adverse reactions of five small molecule antiviral drugs currently approved for marketing in China, so as to provide advice for the clinical rational use of anti-SARS-CoV-2 in the elderly.
10.Research Progress on Microbial Community Succession in the Postmortem Interval Estimation.
Qing-Qing XIANG ; Li-Fang CHEN ; Qin SU ; Yu-Kun DU ; Pei-Yan LIANG ; Xiao-Dong KANG ; He SHI ; Qu-Yi XU ; Jian ZHAO ; Chao LIU ; Xiao-Hui CHEN
Journal of Forensic Medicine 2023;39(4):399-405
The postmortem interval (PMI) estimation is a key and difficult point in the practice of forensic medicine, and forensic scientists at home and abroad have been searching for objective, quantifiable and accurate methods of PMI estimation. With the development and combination of high-throughput sequencing technology and artificial intelligence technology, the establishment of PMI model based on the succession of the microbial community on corpses has become a research focus in the field of forensic medicine. This paper reviews the technical methods, research applications and influencing factors of microbial community in PMI estimation explored by using high-throughput sequencing technology, to provide a reference for the related research on the use of microbial community to estimate PMI.
Humans
;
Postmortem Changes
;
Artificial Intelligence
;
Autopsy
;
Cadaver
;
Microbiota

Result Analysis
Print
Save
E-mail