1.Mechanism of matrine against senescence in human umbilical vein endothelial cells based on network pharmacology and experimental verification.
Dian LIU ; Zi-Ping XIANG ; Ze-Sen DUAN ; Xin-Ying LIU ; Xing WANG ; Hui-Xin ZHANG ; Chao WANG
China Journal of Chinese Materia Medica 2025;50(8):2260-2269
Utilizing network pharmacology, molecular docking, and cellular experimental validation, this study delved into the therapeutic efficacy and underlying mechanisms of matrine in combating senescence. Databases were utilized to predict targets related to the anti-senescence effects of matrine, resulting in the identification of 81 intersecting targets for matrine in the treatment of senescence. A protein-protein interaction(PPI) network was constructed, and key targets were screened based on degree values. Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were performed on the key targets to elucidate the critical pathways involved in the anti-senescence effects of matrine. Molecular docking was conducted between matrine and key targets. A senescence model was established using human umbilical vein endothelial cells(HUVECs) induced with hydrogen peroxide(H_2O_2). Following treatment with varying concentrations of matrine(0.5, 1, and 2 mmol·L~(-1)), cell viability was assessed by using the CCK-8. SA-β-galactosidase staining was employed to observe the positive rate of senescent cells. Flow cytometry was utilized to measure the apoptosis rate. Real-time quantitative PCR(RT-PCR) was utilized to measure the mRNA expression of apoptosis-related cysteine peptidase 3(CASP3), albumin(ALB), glycogen synthase kinase 3β(GSK3B), CD44 molecule(CD44), and tumor necrosis factor-α(TNF-α). Western blot was performed to detect the protein expression of tumor protein p53(p53), cyclin-dependent kinase inhibitor 1A(p21), cyclin-dependent kinase inhibitor 2A(p16), and retinoblastoma tumor suppressor protein(pRb) in the senescence signaling pathway, p38 protein kinase(p38), c-Jun N-terminal kinase(JNK), and extracellular regulated protein kinases(ERK) in the mitogen-activated protein kinase(MAPK) pathway, and phosphatidylinositol 3-kinase(PI3K) and protein kinase B(Akt) in the PI3K/Akt signaling pathway. The experimental results revealed that matrine significantly increased the viability of HUVECs(P<0.05), decreased the positive rate of senescent cells and the apoptosis rate(P<0.05), and reduced the mRNA expression levels of CASP3, ALB, GSK3B, CD44, and TNF-α(P<0.05). It also inhibited the protein expression of p53, p21, p16 and pRb in the senescence signaling pathway(P<0.05), upregulated the protein expression of p-PI3K/PI3K and p-Akt/Akt(P<0.05), and downregulated the protein expression of p-p38/p38, p-JNK/JNK, and p-ERK/ERK(P<0.05). Collectively, these findings suggest that matrine exerts an inhibitory effect on HUVECs senescence, and its mechanism involves the modulation of the senescence signaling pathway, MAPK pathway, and PI3K/Akt signaling pathway to suppress cell apoptosis and inflammation.
Humans
;
Matrines
;
Quinolizines/chemistry*
;
Alkaloids/chemistry*
;
Human Umbilical Vein Endothelial Cells/cytology*
;
Cellular Senescence/drug effects*
;
Network Pharmacology
;
Molecular Docking Simulation
;
Signal Transduction/drug effects*
;
Protein Interaction Maps/drug effects*
;
Cell Survival/drug effects*
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
2.Research on interview outline design and quality control methods based on grounded theory for physician prescribing behavior
Liyuan TAO ; Li WANG ; Xinli XIANG ; Lu YANG ; Songleng DUAN ; Dechun JIANG
China Pharmacy 2025;36(5):524-528
OBJECTIVE To establish a interview outline design process and quality control evaluation method based on grounded theory, providing ideas for qualitative research interview outline design in medical fields. METHODS A literature review was conducted to understand the current research status; a preliminary interview outline was developed around the research content. The triangulation method, group evaluation, expert review and pre-interview were adopted to execute the interview outline and conduct quality control. The evaluation indicators and target values were formulated (an average score for the overall quality evaluation of all indicators ≥4.5, and an average score for individual indicators ≥4.00) to evaluate the effect of the interview outline. Taking the research on the mechanism of physicians’ prescribing behavior under the background of Diagnosis Related Groups (DRGs) payment as an example, the methodological contents of above interview outline were applied in practical research. RESULTS The interview outline included basic information and interview questions. The interview questions were divided into three parts:influencing factors survey, promoting and hindering factors of standardizing physician prescription behavior, and communication, with a total of 12 questions. After being reviewed by members of the research group, experts review and pre- interview, a total of 9 people participated in the quality control evaluation of the interview outline. The overall evaluation score was 4.94 (>4.50), and the average score of each indicator was greater than 4.00, indicating that the quality of the outline met the requirements for the interview and could be used for the formal interview. CONCLUSIONS The established interview outline design and quality control method based on grounded theory provides ideas for the qualitative research interview outline design in the medical field, and lays the foundation for further using grounded theory to study the influencing factors and mechanisms of physician prescription behavior under the DRG background.
3.TPMGD: A genomic database for the traditional medicines in Pakistan.
Rushuang XIANG ; Huihua WAN ; Wei SUN ; Baozhong DUAN ; Weiqian CHEN ; Xue CAO ; Sifan WANG ; Chi SONG ; Shilin CHEN ; Yan WANG ; Atia-Tul WAHAB ; M IQBAL CHOUDHARY ; Xiangxiao MENG
Chinese Herbal Medicines 2025;17(1):87-93
OBJECTIVE:
In Pakistan, traditional medicines are an important component of the medical system, with numerous varieties and great demands. However, due to the scattered resources and the lack of systematic collection and collation, adulteration of traditional Pakistani medicine (TPM) is common, which severely affects the safety of their medicinal use and the import and export trades. Therefore, it is urgent to systematically organize and unify the management of TPM and establish a set of standards and operable methods for the identification of TPM.
METHODS:
We collected and organized the information on 128 TPMs with regard to their medicinal parts, efficacy, usage, and genetic material, based on Pakistan Hamdard Pharmacopoeia of Eastern Medicine: Pharmaceutical Codex. The genetic information of TPM is summarized from national center for biotechnology information (NCBI) and global pharmacopoeia genome database (GPGD). Furthermore, we utilized bioinformatics technology to supplement the chloroplast genome (cp-genome) data of 12 TPMs. To build the web server, we used the Linux + Apache + MySQL + PHP (LAMP) system and constructed the webpage on a PHP: Hypertext Preprocessor (PHP) model view controller (MVC) framework.
RESULTS:
We constructed a new genomic database, the traditional Pakistani medicine genomic database (TPMGD). This database comprises five entries, namely homepage, medicinal species, species identification, basic local alignment search tool (BLAST), and download. Currently, TPMGD contains basic profiles of 128 TPMs and genetic information of 102 TPMs, including 140 cytochrome c oxidase subunit I (COI) sequences and 119 mitochondrial genome sequences from Bombyx mori, 1 396 internal transcribed spacer 2 (ITS2) sequences and 1 074 intergenic region (psbA-trnH) sequences specific to 92 and 83 plant species, respectively. Additionally, TPMGD includes 199 cp-genome sequences of 82 TPMs.
CONCLUSION
TPMGD is a multifunctional database that integrates species description, functional information inquiry, genetic information storage, molecular identification of TPM, etc. The database not only provides convenience for TPM information queries but also establishes the scientific basis for the medication safety, species identification, and resource protection of TPM.
4.Diverse Subtypes of Cardiovascular Disease Risk Evaluated by Novel PREVENT Associated with Different Polycyclic Aromatic Hydrocarbon Metabolites.
Ye XIN ; Yu Cheng SUN ; Lin CHEN ; Feng Tao CUI ; Ying Ge DUAN ; Han Yun WANG ; Li CHEN ; Tian CHEN ; Pi Ye NIU ; Jun Xiang MA
Biomedical and Environmental Sciences 2025;38(10):1217-1229
OBJECTIVE:
To investigate the association of various polycyclic aromatic hydrocarbon (PAH) metabolites with diverse subtypes of cardiovascular disease (CVD) risk.
METHODS:
A novel predicting risk of cardiovascular disease EVENTs PREVENT equation was used to estimate the 10-year diverse subtypes of CVD risk, and their associations with PAH metabolites were analyzed using multiple logistic regression models, the weighted quantile sum (WQS) model, the quantile g-computation (qgcomp) model, and a stratified analysis of subgroups.
RESULTS:
For this study, six thousand seven hundred and forty-five participants were selected, and significant positive associations were observed between PAHs, naphthalene (NAP), and fluorene (FLU), and the risks of total CVD, atherosclerotic cardiovascular disease (ASCVD), and heart failure (HF). NAP and FLU were the primary contributors to the effects of PAH mixtures, and their associations with total CVD, ASCVD, and HF risk were significant in younger participants (30 ≤ age < 50 years); however, the associations of phenanthrene (PHEN) with ASCVD, HF, coronary heart disease (CHD), and stroke were dominant in aging participants (age ≥ 50 years). Notably, pyrene (PYR) was negatively associated with the risk of ASCVD, HF, CHD, and stroke. Similarly, negative associations of PYR with the four CVD subtypes were noticeable in aging participants.
CONCLUSION
Different PAHs metabolites had different impacts on each CVD subtype among different age groups. Notably, the protective effects of PYR on ASCVD, HF, CHD, and stroke were noticeable in aging individuals.
Humans
;
Cardiovascular Diseases/chemically induced*
;
Middle Aged
;
Polycyclic Aromatic Hydrocarbons/metabolism*
;
Male
;
Female
;
Adult
;
Aged
;
Risk Factors
;
China/epidemiology*
5.Immunostimulatory gene therapy combined with checkpoint blockade reshapes tumor microenvironment and enhances ovarian cancer immunotherapy.
Yunzhu LIN ; Xiang WANG ; Shi HE ; Zhongxin DUAN ; Yunchu ZHANG ; Xiaodong SUN ; Yuzhu HU ; Yuanyuan ZHANG ; Zhiyong QIAN ; Xiang GAO ; Zhirong ZHANG
Acta Pharmaceutica Sinica B 2024;14(2):854-868
Immune evasion has made ovarian cancer notorious for its refractory features, making the development of immunotherapy highly appealing to ovarian cancer treatment. The immune-stimulating cytokine IL-12 exhibits excellent antitumor activities. However, IL-12 can induce IFN-γ release and subsequently upregulate PDL-1 expression on tumor cells. Therefore, the tumor-targeting folate-modified delivery system F-DPC is constructed for concurrent delivery of IL-12 encoding gene and small molecular PDL-1 inhibitor (iPDL-1) to reduce immune escape and boost anti-tumor immunity. The physicochemical characteristics, gene transfection efficiency of the F-DPC nanoparticles in ovarian cancer cells are analyzed. The immune-modulation effects of combination therapy on different immune cells are also studied. Results show that compared with non-folate-modified vector, folate-modified F-DPC can improve the targeting of ovarian cancer and enhance the transfection efficiency of pIL-12. The underlying anti-tumor mechanisms include the regulation of T cells proliferation and activation, NK activation, macrophage polarization and DC maturation. The F-DPC/pIL-12/iPDL-1 complexes have shown outstanding antitumor effects and low toxicity in peritoneal model of ovarian cancer in mice. Taken together, our work provides new insights into ovarian cancer immunotherapy. Novel F-DPC/pIL-12/iPDL-1 complexes are revealed to exert prominent anti-tumor effect by modulating tumor immune microenvironment and preventing immune escape and might be a promising treatment option for ovarian cancer treatment.
6.The status of violence against children in China, 2013-2021
Xin GAO ; Pengpeng YE ; Ye JIN ; Yuan WANG ; Yunning LIU ; Cuirong JI ; Xiang SI ; Xiaolei ZHU ; Yibing YANG ; Leilei DUAN
Chinese Journal of Epidemiology 2024;45(10):1371-1375
Objective:This study aims to obtain the prevalence and features associated with Violence Against Children (VAC) in China and, thus, formulate a prevention strategy.Methods:The mortality-related data of VAC was sourced from the National Disease Surveillance Points System (DSP) during 2013-2021. We analyzed the DSP data regarding children aged 0-17 years old who died from violence. The hospital cases of VAC was sourced from the National Injury Surveillance System (NISS), 2013-2021. We analyzed the data from NISS with the parameter of "intentional injury" caused by VAC in children aged between 0-17 years. Using robust linear regression, we analyze the time trend in the proportion of violence incidence. To understand the variations in the incidence of different types of violence across genders, we apply the chi-square test and adjusted Pearson residuals.Results:The overall trend of death caused by VAC has declined; it was reduced to 0.14/100 000 in 2021 from 0.33/100 000 in 2013. In 2021, male VAC mortality (0.15/100 000) was higher than females (0.13/100 000). The proportion of VAC cases to all injury cases has declined from 3.34% in 2013 to 2.29% in 2021. Among 9 344 VAC cases supervised by hospitals in 2021, the number of males (7 503 cases) was around 4 times that of females (1 841 cases), and the top three modes of violence were blunt tools (64.77%), falls (7.46%) and sharp instruments (6.18%), and 45 cases of sexual violence included 38 girls and 7 boys.Conclusions:The declining death rate due to VAC may be related to the benign development of Chinese society. Prevention strategies targeting training in parenting skills and problem-solving should be prioritized.
7.Efficacy and safety of recombinant human anti-SARS-CoV-2 monoclonal antibody injection(F61 injection)in the treatment of patients with COVID-19 combined with renal damage:a randomized controlled exploratory clinical study
Ding-Hua CHEN ; Chao-Fan LI ; Yue NIU ; Li ZHANG ; Yong WANG ; Zhe FENG ; Han-Yu ZHU ; Jian-Hui ZHOU ; Zhe-Yi DONG ; Shu-Wei DUAN ; Hong WANG ; Meng-Jie HUANG ; Yuan-Da WANG ; Shuo-Yuan CONG ; Sai PAN ; Jing ZHOU ; Xue-Feng SUN ; Guang-Yan CAI ; Ping LI ; Xiang-Mei CHEN
Chinese Journal of Infection Control 2024;23(3):257-264
Objective To explore the efficacy and safety of recombinant human anti-severe acute respiratory syn-drome coronavirus 2(anti-SARS-CoV-2)monoclonal antibody injection(F61 injection)in the treatment of patients with coronavirus disease 2019(COVID-19)combined with renal damage.Methods Patients with COVID-19 and renal damage who visited the PLA General Hospital from January to February 2023 were selected.Subjects were randomly divided into two groups.Control group was treated with conventional anti-COVID-19 therapy,while trial group was treated with conventional anti-COVID-19 therapy combined with F61 injection.A 15-day follow-up was conducted after drug administration.Clinical symptoms,laboratory tests,electrocardiogram,and chest CT of pa-tients were performed to analyze the efficacy and safety of F61 injection.Results Twelve subjects(7 in trial group and 5 in control group)were included in study.Neither group had any clinical progression or death cases.The ave-rage time for negative conversion of nucleic acid of SARS-CoV-2 in control group and trial group were 3.2 days and 1.57 days(P=0.046),respectively.The scores of COVID-19 related target symptom in the trial group on the 3rd and 5th day after medication were both lower than those of the control group(both P<0.05).According to the clinical staging and World Health Organization 10-point graded disease progression scale,both groups of subjects improved but didn't show statistical differences(P>0.05).For safety,trial group didn't present any infusion-re-lated adverse event.Subjects in both groups demonstrated varying degrees of elevated blood glucose,elevated urine glucose,elevated urobilinogen,positive urine casts,and cardiac arrhythmia,but the differences were not statistica-lly significant(all P>0.05).Conclusion F61 injection has initially demonstrated safety and clinical benefit in trea-ting patients with COVID-19 combined with renal damage.As the domestically produced drug,it has good clinical accessibility and may provide more options for clinical practice.
8.Quantitative Analysis of Lithium Element in Whole Blood Using Laser-induced Breakdown Spectroscopy
Wen-Xin REN ; Liang YANG ; Han ZHAO ; Yi-Meng WANG ; Da HUANG ; Xin-Hua DAI ; Qing-Yu LIN ; Yi-Xiang DUAN
Chinese Journal of Analytical Chemistry 2024;52(4):559-565
Lithium(Li)salts are commonly used as psychotropic medications for the treatment of major depressive disorders.However,long-term use of Li salts poses a high risk of toxicity,necessitating continuous monitoring of Li concentration in patient blood to ensure medication safety,which is crucial for clinical treatment.Laser-induced breakdown spectroscopy(LIBS),as a rapid analytical technique,has been widely applied in the elemental analysis of complex matrices in various practical scenarios.In this study,LIBS technology combined with partial least squares(PLS)was employed for quantitative analysis of Li elements in blood matrix.A total of 45 clinical blood samples were utilized,and the quantitative models for plasma and whole blood matrices were separately investigated.The number of latent variables in the PLS algorithm was optimized using a five-fold cross-validation method.Results revealed that the PLS quantitative model constructed on the basis of plasma matrix achieved a predictive determination coefficient(R2)of 0.992,a predictive root mean square error(RMSEP)of 0.204 μg/mL,and a relative standard error(RSD)of 2.14%.In contrast,for the PLS quantitative model constructed on the basis of whole blood matrix,the R2 was 0.984,the RMSEP was 0.728 μg/mL,and the RSD was 3.45%Consequently,the LIBS model constructed on the basis of plasma calibration values demonstrated superior performance in quantitative analysis of Li element in whole blood,and LIBS technology provided a new possibility for rapid assessment of blood Li levels in clinical practice,with promising prospects for application.
9.Ionizing radiation-induced damage(IRD)to and repair mechanisms of the male reproductive system:Report of testicular function changes in a case of IRD
Neng-Liang DUAN ; Hua-Pei WANG ; Yuan-Shuai RAN ; Zhi-Xiang GAO ; Feng-Mei CUI ; Qiu CHEN ; Yu-Long LIU ; You-You WANG ; Bo-Xin XUE ; Xiao-Long LIU
National Journal of Andrology 2024;30(8):687-695
Objective:To investigate the impact of ionizing radiation(IR)on the structure and function of the testis and pro-vide some strategies for the prevention and treatment of IR-induced damage(IRD).Methods:Using radiation dose simulation,se-men analysis,hormone testing,electron microscopy and single-cell transcriptome sequencing,we assessed and analyzed a case of IRD.We established a mouse model of IRD to validate the results of single-cell sequencing,and investigated the specific biological mecha-nisms of IRD and potential strategies for its intervention.Results:IR at 1-2 Gy significantly reduced sperm concentration and mo-tility,which gradually recovered after 12 months but the percentage of morphologically normal sperm remained low.It also caused im-balanced levels of various steroid hormones,decreased testosterone and dehydroepiandrosterone sulfate,increased progesterone,prolac-tin,luteinizing hormone,and follicle-stimulating hormone.Electron microscopy revealed damages to the testis structure,including loss of germ cells,atrophy of the seminiferous tubules,nuclear membrane depression of the spermatocytes,mitochondrial atrophy and de-formation,and reduction of mitochondrial cristae.Single-cell sequencing indicated significant changes in the function of the Leydig cells and macrophages and disrupted lipid-related metabolic pathways after IRD.Administration of L-carnitine to the mouse model im-proved lipid metabolism disorders and partially alleviated IRD to the germ cells.Conclusion:Ionizing radiation can cause disorders of testicular spermatogenesis and sexual hormones and inhibit lipid metabolism pathways in Leydig cells and macrophages.Improving lipid metabolism can alleviate IRD to germ cells.
10.A visualization analysis of the progress of GM-CSF in immune-inflammatory response
Xiangwen BU ; Qiao PENG ; Ning DUAN ; Wenmei WANG ; Xiang WANG
China Modern Doctor 2024;62(32):1-6
Objective To analyze the current status,hotspots,and development trends of granulocyte-macrophage colony stimulating factor(GM-CSF)in immune-inflammatory response based on bibliometric analysis.Methods The Web of Science Core Collection database was utilized to retrieve relevant literatures from Jan.1,1990 to Jan.1,2024,and CiteSpace was applied to visualize and analyze the data.Results A total of 1219 GM-CSF in immunoinflammation related papers were included,and the number of publications was on the rise overall.The number of publications in the United States ranked the first in the world with 445 articles.The institution with the highest number was the University of Melbourne 25 articles.The authors tied for the first place were Jordana M and Becher B(10 articles for each),and the author with the highest citation count was Hamilton JA 128 times;the most cited journal was Journal of Immunology 986 times,and the high frequency keywords related to GM-CSF in immunoinflammation were mainly obtained on inflammation,dendritic cell,T cell,etc.The hotspots of research in recent years are focused on immunity and microglia.Conclusion The research of GM-CSF in immuno-inflammation continues to deepen,and its academic influence is gradually broadened.The future research direction lies in exploring the mechanism of GM-CSF in immunoinflammation and targeted therapy.

Result Analysis
Print
Save
E-mail