1.Effect of deep muscle stimulation combined with electromyographic biofeedback on the spasms of the triceps surae and gait changes after stroke
Qiming ZHANG ; Di LIAO ; Zhiliang ZHONG ; Lihua LIN ; Xiang ZHENG ; Qiong LI ; Sharui SHAN
Chinese Journal of Tissue Engineering Research 2025;29(2):385-392
BACKGROUND:Deep muscle stimulation has the effects of releasing muscle adhesion,relieving muscle spasm,improving and restoring muscle compliance and elasticity.Electromyographic biofeedback therapy can promote nerve recovery and improve lower limb motor function and gait. OBJECTIVE:To observe the effect of the effect of deep muscle stimulation combined with electromyographic biofeedback therapy on the spasm of the triceps surae and gait changes after stroke by using a digital muscle detector and three-dimensional gait analysis system. METHODS:A total of 72 patients who met the inclusion criteria were selected from the Rehabilitation Department of the First Affiliated Hospital of Guangdong Pharmaceutical University from October 2020 to October 2023.And they were enrolled and randomly divided into two groups(n=36 per group):a control group and a combined group.The control group received routine rehabilitation therapies,electromyographic biofeedback and pseudo deep muscle stimulation,while the combined group received true deep muscle stimulation treatment on the basis of the control group,five times per week,for 4 consecutive weeks.The oscillation frequency and dynamic stiffness of the affected gastrocnemius muscle,active range of motion of the ankle dorsiflexion muscle,electromyographic signal of the tibialis anterior muscle,Fugl-Meyer assessment of the lower limbs,and three-dimensional gait analysis parameters were statistically analyzed before and after treatment in two groups. RESULTS AND CONCLUSION:After treatment,oscillation frequency and dynamic stiffness values of the inner and outer sides of the affected gastrocnemius muscle in both groups of patients were significantly reduced compared with before treatment(P<0.05),and the combined group showed a more significant decrease compared with the control group(P<0.05).The active range of motion of the ankle dorsiflexion muscle,electromyographic signal of the tibialis anterior muscle,and Fugl-Meyer scores after treatment were significantly increased or improved compared with before treatment(P<0.05),while the combined group showed a more significant increase or improvement compared with the control group(P<0.05).In terms of gait parameters,the walking speed,frequency,and stride in both groups of patients were significantly increased compared with before treatment(P<0.05),while the combined group showed a more significant increase compared with the control group(P<0.05).The percentage time of support phase on the healthy side was shortened compared with before treatment(P<0.05),while the combined group showed a more significant decrease compared with the control group(P<0.05).In addition,there was no significant difference between the two groups except for the percentage of healthy side support(P>0.05).To conclude,the combination of deep muscle stimulation and electromyographic biofeedback can effectively alleviate triceps spasm in the short term after stroke,improve ankle dorsiflexion function,enhance lower limb motor function,and improve gait.The treatment effect is significant and worthy of clinical promotion and application.
2.The Role of AMPK in Diabetic Cardiomyopathy and Related Intervention Strategies
Fang-Lian LIAO ; Xiao-Feng CHEN ; Han-Yi XIANG ; Zhi XIA ; Hua-Yu SHANG
Progress in Biochemistry and Biophysics 2025;52(10):2550-2567
Diabetic cardiomyopathy is a distinct form of cardiomyopathy that can lead to heart failure, arrhythmias, cardiogenic shock, and sudden death. It has become a major cause of mortality in diabetic patients. The pathogenesis of diabetic cardiomyopathy is complex, involving increased oxidative stress, activation of inflammatory responses, disturbances in glucose and lipid metabolism, accumulation of advanced glycation end products (AGEs), abnormal autophagy and apoptosis, insulin resistance, and impaired intracellular Ca2+ homeostasis. Recent studies have shown that adenosine monophosphate-activated protein kinase (AMPK) plays a crucial protective role by lowering blood glucose levels, promoting lipolysis, inhibiting lipid synthesis, and exerting antioxidant, anti-inflammatory, anti-apoptotic, and anti-ferroptotic effects. It also enhances autophagy, thereby alleviating myocardial injury under hyperglycemic conditions. Consequently, AMPK is considered a key protective factor in diabetic cardiomyopathy. As part of diabetes prevention and treatment strategies, both pharmacological and exercise interventions have been shown to mitigate diabetic cardiomyopathy by modulating the AMPK signaling pathway. However, the precise regulatory mechanisms, optimal intervention strategies, and clinical translation require further investigation. This review summarizes the role of AMPK in the prevention and treatment of diabetic cardiomyopathy through drug and/or exercise interventions, aiming to provide a reference for the development and application of AMPK-targeted therapies. First, several classical AMPK activators (e.g., AICAR, A-769662, O-304, and metformin) have been shown to enhance autophagy and glucose uptake while inhibiting oxidative stress and inflammatory responses by increasing the phosphorylation of AMPK and its downstream target, mammalian target of rapamycin (mTOR), and/or by upregulating the gene expression of glucose transporters GLUT1 and GLUT4. Second, many antidiabetic agents (e.g., teneligliptin, liraglutide, exenatide, semaglutide, canagliflozin, dapagliflozin, and empagliflozin) can promote autophagy, reverse excessive apoptosis and autophagy, and alleviate oxidative stress and inflammation by enhancing AMPK phosphorylation and its downstream targets, such as mTOR, or by increasing the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor‑α (PPAR‑α). Third, certain anti-anginal (e.g., trimetazidine, nicorandil), anti-asthmatic (e.g., farrerol), antibacterial (e.g., sodium houttuyfonate), and antibiotic (e.g., minocycline) agents have been shown to promote autophagy/mitophagy, mitochondrial biogenesis, and inhibit oxidative stress and lipid accumulation via AMPK phosphorylation and its downstream targets such as protein kinase B (PKB/AKT) and/or PPAR‑α. Fourth, natural compounds (e.g., dihydromyricetin, quercetin, resveratrol, berberine, platycodin D, asiaticoside, cinnamaldehyde, and icariin) can upregulate AMPK phosphorylation and downstream targets such as AKT, mTOR, and/or the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting anti-inflammatory, anti-apoptotic, anti-pyroptotic, antioxidant, and pro-autophagic effects. Fifth, moderate exercise (e.g., continuous or intermittent aerobic exercise, aerobic combined with resistance training, or high-intensity interval training) can activate AMPK and its downstream targets (e.g., acetyl-CoA carboxylase (ACC), GLUT4, PPARγ coactivator-1α (PGC-1α), PPAR-α, and forkhead box protein O3 (FOXO3)) to promote fatty acid oxidation and glucose uptake, and to inhibit oxidative stress and excessive mitochondrial fission. Finally, the combination of liraglutide and aerobic interval training has been shown to activate the AMPK/FOXO1 pathway, thereby reducing excessive myocardial fatty acid uptake and oxidation. This combination therapy offers superior improvement in cardiac dysfunction, myocardial hypertrophy, and fibrosis in diabetic conditions compared to liraglutide or exercise alone.
3.Metabolomics and pharmacokinetics of Corni Fructus in ameliorating myocardial ischemic injury.
Xiang-Feng LIU ; Yu WU ; Chao-Yan YANG ; Hua-Wei LIAO ; Yan-Fen CHEN ; Xin HE ; Ying-Fang WANG ; Jin-Ru LIANG
China Journal of Chinese Materia Medica 2025;50(5):1363-1376
This study aims to investigate the ameliorating effect of Corni Fructus(CF) on the myocardial ischemic injury and the pharmacokinetic properties of characteristic components of CF. The mouse model of isoproterenol-induced myocardial ischemia was established and administrated with the aqueous extract of CF. The general efficacy of CF in ameliorating the myocardial ischemic injury was evaluated based on the cardiac histopathology and the levels of myocardial injury markers: creatine kinase isoenzyme(CK-MB) and cardiac troponin I(cTn-I). The metabolomics analysis was carried out for the heart and serum samples of mice to screen the biomarkers of CF in ameliorating the myocardial ischemic injury and then the predicted biomarkers were submitted to metabolic pathway enrichment. The pharmacokinetic analysis was performed for morroniside, loganin, and cornuside Ⅰ in mouse heart and serum samples to obtain the pharmacokinetic parameters of these components. The pharmacokinetic parameters were then integrated on the basis of self-defined weighting coefficients to simulate an integrated pharmacokinetic profile of CF iridoid glycosides in the heart and serum of the mouse model of myocardial ischemia. The results indicated that CF reduced the pathological damage to cardiac cells and tissue(hematoxylin-eosin staining) and lowered the levels of CK-MB and cTn-I in the serum of the mouse model of myocardial ischemia(P<0.01). Metabolomics analysis screed out 31 endogenous metabolites in the heart and 35 in the serum as biomarkers of CF in ameliorating the myocardial ischemic injury. These biomarkers were altered by modeling and restored by CF. Six metabolic pathways in the heart and 5 in the serum were enriched based on these metabolic markers. The main integrated pharmacokinetic parameters of CF iridoid glycosides were T_(max)=1 h, t_(1/2)=(1.52±0.05) h in the heart and T_(max)=1 h, t_(1/2)=(1.56±0.50) h in the serum. Both concentration-time curves showed a double-peak phenomenon. In conclusion, CF demonstrated the cardioprotective effect by regulating metabolic pathways such as taurine and hypotaurine metabolism, and pantothenic acid and coenzyme A biosynthesis. The integrated pharmacokinetics reflect the general pharmacokinetic properties of characteristic components in CF.
Animals
;
Cornus/chemistry*
;
Mice
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Myocardial Ischemia/metabolism*
;
Humans
;
Troponin I/metabolism*
;
Myocardium/pathology*
;
Disease Models, Animal
;
Biomarkers/metabolism*
;
Creatine Kinase, MB Form/metabolism*
4.Neural network for auditory speech enhancement featuring feedback-driven attention and lateral inhibition.
Yudong CAI ; Xue LIU ; Xiang LIAO ; Yi ZHOU
Journal of Biomedical Engineering 2025;42(1):82-89
The processing mechanism of the human brain for speech information is a significant source of inspiration for the study of speech enhancement technology. Attention and lateral inhibition are key mechanisms in auditory information processing that can selectively enhance specific information. Building on this, the study introduces a dual-branch U-Net that integrates lateral inhibition and feedback-driven attention mechanisms. Noisy speech signals input into the first branch of the U-Net led to the selective feedback of time-frequency units with high confidence. The generated activation layer gradients, in conjunction with the lateral inhibition mechanism, were utilized to calculate attention maps. These maps were then concatenated to the second branch of the U-Net, directing the network's focus and achieving selective enhancement of auditory speech signals. The evaluation of the speech enhancement effect was conducted by utilising five metrics, including perceptual evaluation of speech quality. This method was compared horizontally with five other methods: Wiener, SEGAN, PHASEN, Demucs and GRN. The experimental results demonstrated that the proposed method improved speech signal enhancement capabilities in various noise scenarios by 18% to 21% compared to the baseline network across multiple performance metrics. This improvement was particularly notable in low signal-to-noise ratio conditions, where the proposed method exhibited a significant performance advantage over other methods. The speech enhancement technique based on lateral inhibition and feedback-driven attention mechanisms holds significant potential in auditory speech enhancement, making it suitable for clinical practices related to artificial cochleae and hearing aids.
Humans
;
Attention/physiology*
;
Speech Perception/physiology*
;
Neural Networks, Computer
;
Speech
;
Noise
;
Feedback
5.Intramedullary administration of tranexamic acid reduces bleeding in proximal femoral nail antirotation surgery for intertrochanteric fractures in elderly individuals: A randomized controlled trial.
Xiang-Ping LUO ; Jian PENG ; Ling ZHOU ; Hao LIAO ; Xiao-Chun JIANG ; Xiong TANG ; Dun TANG ; Chao LIU ; Jian-Hui LIU
Chinese Journal of Traumatology 2025;28(3):201-207
PURPOSE:
Intertrochanteric fractures undergoing proximal femoral nail antirotation (PFNA) surgery are associated with significant hidden blood loss. This study aimed to explore whether intramedullary administration of tranexamic acid (TXA) can reduce bleeding in PFNA surgery for intertrochanteric fractures in elderly individuals.
METHODS:
A randomized controlled trial was conducted from January 2019 to December 2022. Patients aged over 60 years with intertrochanteric fractures who underwent intramedullary fixation surgery with PFNA were eligible for inclusion and grouped according to random numbers. A total of 249 patients were initially enrolled, of which 83 were randomly allocated to the TXA group and 82 were allocated to the saline group. The TXA group received intramedullary perfusion of TXA after the bone marrow was reamed. The primary outcomes were total peri-operative blood loss and post-operative transfusion rate. The occurrence of adverse events was also recorded. Continuous data was analyzed by unpaired t-test or Mann-Whitney U test, and categorical data was analyzed by Pearson Chi-square test.
RESULTS:
The total peri-operative blood loss (mL) in the TXA group was significantly lower than that in the saline group (577.23 ± 358.02 vs. 716.89 ± 420.30, p = 0.031). The post-operative transfusion rate was 30.67% in the TXA group and 47.95% in the saline group (p = 0.031). The extent of post-operative deep venous thrombosis and the 3-month mortality rate were similar between the 2 groups.
CONCLUSION
We observed that intramedullary administration of TXA in PFNA surgery for intertrochanteric fractures in elderly individuals resulted in less peri-operative blood loss and decreased transfusion rate, without any adverse effects, and is, thus, recommended.
Humans
;
Tranexamic Acid/administration & dosage*
;
Hip Fractures/surgery*
;
Male
;
Aged
;
Female
;
Fracture Fixation, Intramedullary/adverse effects*
;
Blood Loss, Surgical/prevention & control*
;
Antifibrinolytic Agents/administration & dosage*
;
Aged, 80 and over
;
Bone Nails
;
Middle Aged
;
Blood Transfusion/statistics & numerical data*
6.Overexpression of parathyroid hormone-like hormone facilitates hepatocellular carcinoma progression and correlates with adverse outcomes.
Xiangzhuo MIAO ; Pengyu ZHU ; Huohui OU ; Qing ZHU ; Linyuan YU ; Baitang GUO ; Wei LIAO ; Yu HUANG ; Leyang XIANG ; Dinghua YANG
Journal of Southern Medical University 2025;45(10):2135-2145
OBJECTIVES:
To investigate the expression of parathyroid hormone-like hormone (PTHLH) in hepatocellular carcinoma (HCC) and analyze its correlation with clinical prognosis, its regulatory effects on HCC cell behaviors, and the signaling pathways mediating its effects.
METHODS:
We analyzed the differential expression of PTHLH in HCC and adjacent tissues and its association with patient prognosis based on data from TCGA and GEO databases and from 70 HCC patients treated in our hospital. The effects of PTHLH knockdown and overexpression on proliferation, migration, and invasion of cultured HCC cells were investigated using CCK-8 assay, colony formation assay, Transwell migration and invasion assays, and the signaling pathways activated by PTHLH were detected using Western blotting.
RESULTS:
TCGA and GEO database analysis showed significant overexpression of PTHLH mRNA in HCC tissues, which was associated with poor prognosis of the patients (P<0.05). High PTHLH mRNA expression was a probable independent prognostic risk factor for HCC (P<0.05). In the clinical samples, PTHLH mRNA and protein expressions were significantly higher in HCC tissues than in the adjacent tissues (P<0.001 or 0.01). Univariate and multivariate Cox regression analyses suggested that high PTHLH mRNA expression was an independent risk factor to affect postoperative disease-free survival of HCC patients (P<0.05). The prognostic prediction model based on PTHLH mRNA expression showed an improved accuracy for predicting the risk of postoperative recurrence in HCC patients. In cultured HCC cells, PTHLH overexpression significantly promoted cell proliferation, colony formation, migration and invasion, and caused activation of the ERK/JNK signaling pathway in Huh7 and Hep3B cells.
CONCLUSIONS
High PTHLH expression promotes HCC progression and is associated with poor patient prognosis. Its pro-tumor effects may be mediated by activation of the ERK/JNK signaling pathway.
Humans
;
Carcinoma, Hepatocellular/metabolism*
;
Liver Neoplasms/metabolism*
;
Prognosis
;
Cell Proliferation
;
Parathyroid Hormone-Related Protein/genetics*
;
Cell Line, Tumor
;
Cell Movement
;
Disease Progression
;
Signal Transduction
;
Male
;
RNA, Messenger/genetics*
;
Female
7.Association between Fish Consumption and Stroke Incidence Across Different Predicted Risk Populations: A Prospective Cohort Study from China.
Hong Yue HU ; Fang Chao LIU ; Ke Yong HUANG ; Chong SHEN ; Jian LIAO ; Jian Xin LI ; Chen Xi YUAN ; Ying LI ; Xue Li YANG ; Ji Chun CHEN ; Jie CAO ; Shu Feng CHEN ; Dong Sheng HU ; Jian Feng HUANG ; Xiang Feng LU ; Dong Feng GU
Biomedical and Environmental Sciences 2025;38(1):15-26
OBJECTIVE:
The relationship between fish consumption and stroke is inconsistent, and it is uncertain whether this association varies across predicted stroke risks.
METHODS:
A cohort study comprising 95,800 participants from the Prediction for Atherosclerotic Cardiovascular Disease Risk in China project was conducted. A standardized questionnaire was used to collect data on fish consumption. Participants were stratified into low- and moderate-to-high-risk categories based on their 10-year stroke risk prediction scores. Hazard ratios ( HRs) and 95% confidence intervals ( CIs) were estimated using Cox proportional hazard models and additive interaction by relative excess risk due to interaction (RERI), attributable proportion (AP), and synergy index (SI).
RESULTS:
During 703,869 person-years of follow-up, 2,773 incident stroke events were identified. Higher fish consumption was associated with a lower risk of stroke, particularly among moderate-to-high-risk individuals ( HR = 0.53, 95% CI: 0.47-0.60) than among low-risk individuals ( HR = 0.64, 95% CI: 0.49-0.85). A significant additive interaction between fish consumption and predicted stroke risk was observed (RERI = 4.08, 95% CI: 2.80-5.36; SI = 1.64, 95% CI: 1.42-1.89; AP = 0.36, 95% CI: 0.28-0.43).
CONCLUSION
Higher fish consumption was associated with a lower risk of stroke, and this beneficial association was more pronounced in individuals with moderate-to-high stroke risk.
Humans
;
China/epidemiology*
;
Male
;
Female
;
Stroke/etiology*
;
Middle Aged
;
Prospective Studies
;
Incidence
;
Aged
;
Animals
;
Fishes
;
Risk Factors
;
Diet
;
Seafood
;
Adult
;
Cohort Studies
8.Advances in Research on Application of Quantitative CT in Clinical Diagnosis and Treatment of Osteoporosis.
Ning XIA ; Dong-Fa LIAO ; Xiang-Wei LI ; Da LIU
Acta Academiae Medicinae Sinicae 2025;47(1):118-123
Quantitative CT (QCT) is a method of measuring bone mineral density (BMD) of human based on a CT machine,calibrated by QCT body model and analyzed by professional software.Compared with dual-energy X-ray absorptiometry,QCT can not only assess the cortical and cancellous BMD but also exclude the influences of osteophytes and aortic/vascular calcification,thus being capable of accurately reflecting patients' bone mass.In recent years,increasing studies on QCT and osteoporosis (OP) have been carried out,and the application of QCT in the diagnosis of OP,evaluation of vertebral bone conditions,prediction of fracture risks,and assessment of anti-OP treatment is garnering increasing attention from researchers at home and abroad.This article reviews the research progress in this field,aiming to provide a reference for the research on QCT in the diagnosis and treatment of OP.
Humans
;
Osteoporosis/diagnosis*
;
Tomography, X-Ray Computed/methods*
;
Bone Density
9.Multiple Liver Metastases in Malignant Insulinoma: A Case Report
Jinhao LIAO ; Yuting GAO ; Xiang WANG ; Zhiwei WANG ; Qiang XU ; Yuxing ZHAO ; Yue CHI ; Jiangfeng MAO ; Hongbo YANG
Medical Journal of Peking Union Medical College Hospital 2024;15(4):968-972
Malignant insulinoma is a kind of rare and challenging neuroendocrine tumor. It is often accompanied by distant metastasis, among which liver metastasis is most common, and the prognosis is often non-promising. In this paper, we report a case of multiple liver metastases from malignant insulinoma. The patient, a 70-year-old male, was admitted to the hospital due to "episodic consciousness disorder for more than four months." Blood glucose monitoring revealed recurrent hypoglycemia in the early morning, after meals, and at night. Pancreatic perfusion CT and dynamic enhanced MRI of the liver revealed a mass in the uncinate process of the pancreatic head and multiple liver metastases. Percutaneous liver biopsy confirmed the diagnosis of insulinoma. After multidisciplinary discussions, hepatic artery embolization and radiofrequency ablation were performed in stages, in combination with everolimus treatment. Thereafter, the enhanced CT demonstrated that some liver metastases shrank. The patient had regular meals, and the blood sugar gradually increased and remained normal thereafter. This article discusses this case's clinical characteristics and multidisciplinary collaborative diagnosis and treatment, aiming to provide experience for the comprehensive clinical diagnosis and treatment of malignant insulinoma patients.
10.Protective effect and mechanism of RSR13 on lung blast injury in rats at high altitude
Qingying HE ; Yue LI ; Jing WEN ; Lunli XIANG ; Jiaxiang DUAN ; Xianjian LIAO ; Bin YI ; Jiaolin NING
Journal of Army Medical University 2024;46(20):2352-2359
Objective To investigate the impact and mechanism of efaproxiral (RSR13),a hemoglobin allosteric agent,on lung injury in rats caused by explosion-induced shock waves in plateau areas. Methods Eighty-two healthy male SD rats (8-week-old,transferred from an altitude of 2 880 m to 4700 m within 6 h)were randomly divided into blast injury group and RSR13+blast injury group (intraperitoneal injection of 150 mg/kg RSR132 h before explosion).Sixty rats were positioned at 5 m from the explosion source and divided into 5-m blast injury group (n=30)and 5-m RSR13+blast injury group (n=30). Additionally,16 rats were positioned at 6 m from the explosion source and then assigned into 6-m blast injury group (n=8)and 6-m RSR13+blast injury group (n=8).The left 6 rats served as control (n=6).Survival outcomes of each rat group positioned 5 m from the explosion source were observed over a 24-hour period.HE staining was used to evaluate the pathological score of the surviving rats positioned at 6 m from the explosion source in 24 h after explosion,along with arterial blood gas analysis.The contents of glutathione (GSH),malondialdehyde (MDA ) and superoxide dismutase (SOD ) in the lung tissues were determined by colorimetry.Western blotting was conducted to measure the expression levels of cleaved caspase-3 and occludin in the lung tissue.Results RSR13 pretreatment increased the survival rate immediately after explosion (93.3% vs 46.7%,P<0.01 )and at 1 h after explosion (86.7% vs 46.7%,P<0.01 )in plateau areas of 5 m from the explosion source.At high altitude,RSR13 pretreatment reduced the pathological score of lung injury in rats 6 m away from the explosion source (8.27±0.93 vs 13.70±0.78,P<0.01 ),but had no significant effect on the results of arterial blood gas analysis in rats with lung blast injury (P>0.05 ).In addition,RSR13 pretreatment also increased GSH content (40.27±12.47 vs 22.62±10.88 μg/g,P<0.05),but showed no obvious effect on MDA content and SOD activity (P>0.05 ),decreased the protein level of cleaved caspase-3 (P<0.01 )and increased that of occludin (P<0.05 )in the lung tissues.Conclusion RSR13 exerts significant protective effect on lung injury in rats caused by explosion-induced shock waves in high-altitude environment,which may be related to its increasing antioxidant capacity,reducing cell apoptosis and decreasing barrier permeability of lung ventilation.

Result Analysis
Print
Save
E-mail