1.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
2.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
3.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
4.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
5.Cross sectional and cross lagged network analyses of Internet addiction among university students
GOU Hao, HUANG Wenying, SUN Qunqun, HU Chang, ZHANG Wen, XIANG Luyao, SONG Chao
Chinese Journal of School Health 2025;46(9):1287-1291
Objective:
To understand the dynamic temporal evolution pathways of Internet addiction among university students and to identify the core driving nodes, so as to provide theoretical evidences for the precise implementation of targeted interventions.
Methods:
Using a convenient cluster sampling method, a total of 1 066 full time freshmen and sophomores were recruited from three universities in Guizhou, Jiangxi, and Guangdong Provinces for a follow up survey (T1:January-March 2024; T2:January-March 2025). The Revised Chen Internet Addiction Scale (CIAS-R) was employed to assess the status of Internet addiction among university students, and cross sectional as well as cross lagged panel network models were constructed to analyze Internet addiction and its multidimensional influencing factors.
Results:
The T1 network comprised 19 nodes and 114 non zero edges, while the T2 network comprised 19 nodes and 126 non zero edges. Cross sectional network analysis revealed the strongest association between "insufficient sleep" and "daytime fatigue"; the core nodes were "first thought upon waking for going online" and "feeling low after disconnection" (characteristics of psychological dependence) at T1, while the core nodes shifted to "impaired health" and "excitement when online" (characteristics of functional impairment and addictive psychodynamic features) at T2. Cross lagged network analysis further indicated that "reduced leisure" directly predicted "sleep compression", and a bidirectional relationship was observed between "needing more time to achieve satisfaction" and "academic decline".
Conclusions
Internet addiction among university students exhibits dynamic evolutionary characteristics. Stage specific targeted interventions focusing on core driving nodes are needed, integrating behavioral regulation and academic support to break the vicious cycle and enhancing the ability to cope with real life demands.
6.Ubiquitination and Deubiquitination in Oral Squamous Cell Carcinoma: Potential Drug Targets
Han CHANG ; Meng-Xiang ZHAO ; Xiao-Feng JIN ; Bin-Bin YING
Progress in Biochemistry and Biophysics 2025;52(10):2512-2534
Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy worldwide, accounting for more than 90% of all oral cancers, and is characterized by high invasiveness and poor long-term prognosis. Its etiology is multifactorial, involving tobacco use, alcohol consumption, and human papillomavirus (HPV) infection. Oral leukoplakia and erythroplakia are the main precancerous lesions lesions, with oral leukoplakia being the most common. Both OSCC and premalignant lesions are closely associated with aberrant activation of multiple signaling pathways. Post-translational modifications (such as ubiquitination and deubiquitination) play key roles in regulating these pathways by controlling protein stability and activity. Growing evidence indicates that dysregulated ubiquitination/deubiquitination can mediate OSCC initiation and progression via aberrant activation of signaling pathways. The ubiquitination/deubiquitination process mainly involves E3 ligases (E3s) that catalyze substrate ubiquitination, deubiquitinating enzymes (DUBs) that remove ubiquitin chains, and the 26S proteasome complex that degrades ubiquitinated substrates. Abnormal expression or mutation of E3s and DUBs can lead to altered stability of critical tumor-related proteins, thereby driving OSCC initiation and progression. Therefore, understanding the aberrantly activated signaling pathways in OSCC and the ubiquitination/deubiquitination mechanisms within these pathways will help elucidate the molecular mechanisms and improve OSCC treatment by targeting relevant components. Here, we summarize four aberrantly activated signaling pathways in OSCC―the PI3K/AKT/mTOR pathway, Wnt/β-catenin pathway, Hippo pathway, and canonical NF-κB pathway―and systematically review the regulatory mechanisms of ubiquitination/deubiquitination within these pathways, along with potential drug targets. PI3K/AKT/mTOR pathway is aberrantly activated in approximately 70% of OSCC cases. It is modulated by E3s (e.g., FBXW7 and NEDD4) and DUBs (e.g., USP7 and USP10): FBXW7 and USP10 inhibit signaling, while NEDD4 and USP7 potentiate it. Aberrant activation of the Wnt/β‑catenin pathway leads to β‑catenin nuclear translocation and induction of cell proliferation. This pathway is modulated by E3s (e.g., c-Cbl and RNF43) and DUBs (e.g., USP9X and USP20): c-Cbl and RNF43 inhibit signaling, while USP9X and USP20 potentiate it. Hippo pathway inactivation permits YAP/TAZ to enter the nucleus and promotes cancer cell metastasis. This pathway is modulated by E3s (e.g., CRL4DCAF1 and SIAH2) and DUBs (e.g., USP1 and USP21): CRL4DCAF1 and SIAH2 inhibit signaling, while USP1 and USP21 potentiate it. Persistent activation of the canonical NF-κB pathway is associated with an inflammatory microenvironment and chemotherapy resistance. This pathway is modulated by E3s (e.g., TRAF6 and LUBAC) and DUBs (e.g., A20 and CYLD): A20 and CYLD inhibit signaling, while TRAF6 and LUBAC potentiate it. Targeting these E3s and DUBs provides directions for OSCC drug research. Small-molecule inhibitors such as YCH2823 (a USP7 inhibitor), GSK2643943A (a USP20 inhibitor), and HOIPIN-8 (a LUBAC inhibitor) have shown promising antitumor activity in preclinical models; PROTAC molecules, by binding to surface sites of target proteins and recruiting E3s, achieve targeted ubiquitination and degradation of proteins insensitive to small-molecule inhibitors, for example, PU7-1-mediated USP7 degradation, offering new strategies to overcome traditional drug limitations. Currently, NX-1607 (a Cbl-b inhibitor) has entered phase I clinical trials, with preliminary results confirming its safety and antitumor activity. Future research on aberrant E3s and DUBs in OSCC and the development of highly specific inhibitors will be of great significance for OSCC precision therapy.
7.Rapid health technology assessment of insulin icodec for the treatment of type 2 diabetes mellitus
Jie LI ; Hong LI ; Guanji CHEN ; Xiaoyan CHANG ; Xiang YANG ; Zhitao JIANG
China Pharmacy 2025;36(22):2856-2861
OBJECTIVE To comprehensively evaluate the efficacy, safety and cost-effectiveness of insulin icodec in treating type 2 diabetes mellitus (T2DM), providing evidence-based guidance for new drug selection in hospital and clinical medication decision-making. METHODS PubMed, Cochrane Library, Embase, CNKI, Wanfang, VIP and foreign health technology assessment (HTA) websites were searched by using rapid health technology assessment from inception to 15 July 2025 for systematic reviews/meta-analyses, pharmacoeconomic studies, and HTA reports on insulin icodec in the treatment of T2DM. After data extraction and quality assessment, the findings of the included studies were analyzed descriptively. RESULTS Ten systematic reviews/meta-analyses and three pharmacoeconomic studies were included. Among them, 4 systematic reviews/meta-analyses were of high quality; the overall quality of the 3 pharmacoeconomic studies was relatively good. Regarding efficacy, insulin icodec was superior to once-daily basal insulin in reducing glycated hemoglobin (HbA1c) and in achieving the target of HbA1c<7% (P<0.05). No significant differences were observed between icodec insulin and comparators in lowering fasting plasma glucose (P>0.05). For safety, insulin icodec did not increase the incidence of any adverse events (AEs), serious AEs, clinically significant hypoglycemia (random glucose<3 mmol/L), injection-site reactions, or allergic reactions, compared with once-daily basal insulin overall (P> 0.05); however, insulin icodec was associated with a significant increase in body weight (P<0.05). Domestic economic evaluations indicated that insulin icodec was more cost-effective than insulin glargine and insulin degludec when its annual costs were in the range of 784.90-1 145.96 and 597.66-736.34 US dollars, respectively. CONCLUSIONS Insulin icodec demonstrates favorable efficacy and safety profiles in the treatment of T2DM; however, attention should be paid to the risk of weight gain. Under China’s healthcare system, insulin icodec demonstrates greater economic value only when the patient’s weekly required basal insulin dose falls within a specific range,and clinical practice requires individualization.
8.Proficiency testing on determination of the content of geniposide in Gardeniae fructus by HPLC
Xiaohan GUO ; Yan CHANG ; Jiating ZHANG ; Kunzi YU ; Jianbo YANG ; Minghua LI ; Siyu MA ; Yiyun LU ; Xinhua XIANG ; Xianlong CHENG ; Feng WEI
Chinese Journal of Pharmacoepidemiology 2024;33(10):1115-1123
Objective To carry out a proficiency testing of content determination of geniposide in Gardeniae fructus,evaluate the content determination ability of index components in traditional Chinese medicine in the laboratory of inspection and detection in drug-related fields,and improve the quality control ability of content determination of related laboratories.Methods The laboratory's capability-verification activities were conducted based on the CNAS-RL02 Rules for Proficiency Testing and ISO/IEC 17043 Conformity Assessment-General Requirements for Proficiency Testing.After preparing the sample,the results of homogeneity and stability tests were analyzed according to CNAS-GL003 Guidance on Evaluating the Homogeneity and Stability of Samples Used for Proficiency Testing.After the test results were qualified,they were used as proficiency testing samples and randomly distributed to participants.The results were collected,and the robust statistical method and the Z scores were used to analyze the results of these laboratories'reports.Results 403 laboratories in this proficiency testing program reported the results,of which 367 results were acceptable,accounting for 91.07%,17(4.22%)laboratories obtained suspicious results,and 19 laboratories gave unsatisfactory results,with the dissatisfaction rate of 4.71%.Conclusion The majority of the 403 participant laboratories have the ability to determine the content of geniposide in Gardeniae fructus by HPLC and the laboratory testing ability and quality management level of the drug monitoring system are high.This proficiency testing provides a basis for understanding the technical reserve capacity and management level of China's pharmaceutical inspection and testing laboratories,and provides technical support for future government supervision.
9.Mechanism analysis of fisetin regulating LKB1-AMPK-mTOR-p70S6K pathway to improve oligonasthenospermia in rats
Li-Bang CHEN ; Bing-Xiang SHEN ; Chun-Yuan HE ; Wei-Chen ZHAO ; Wei CHANG ; Tong-Sheng WANG
Chinese Pharmacological Bulletin 2024;40(7):1296-1301
Aim To investigate the protective effect of fisetin on testis and sperm of rats with oligoasthenosper-mia and to explore its mechanism.Methods The rat model of oligoasthenospermia was established.The rats were randomly divided into the blank group,model group,low-,medium-,and high-dose fisetin treat-ment groups,and LKB1 agonist group,with 10 rats in each group.ELISA was used to detect the levels of FSH,LH,T,E2 and PRL.Flow cytometry was used to detect sperm cell apoptosis.HE staining was used to detect testicular tissue damage.Transmission electron microscopy was used to detect the ultrastructure of sperm cells.qRT-PCR and Western blot were used to detect the mRNA and protein expression of LKB1,AMPK,mTOR,and p70S6K.Results Compared with the blank group,the levels of FSH,LH,PRL,T and other hormones in the model group and LKB1 ago-nist group were significantly reduced,and sperm cell apoptosis and testicular injury were severe.The ex-pressions of LKB1 and p-AMPK/AMPK were signifi-cantly up-regulated,while the expressions of mTOR and p-p70S6K/p70S6K were significantly down-regula-ted(P<0.05).Compared with the model group,af-ter different doses of fisetin treatment,the number of apoptotic sperm cells was significantly reduced,the levels of FSH,LH,PRL,T and other hormones markedly increased,the expression of LKB1 and p-AMPK/AMPK was significantly down-regulated,and the expression of mTOR and p-p70S6K/p70S6K was evidently up-regulated(P<0.05).Conclusion Fi-setin is effective in the treatment of oligoasthenospermia rats,which may be related to LKB1-AMPK-mTOR-p70S6K signaling pathway.
10.Scoping review of application of somatosensory games in frail elderly people
Jun'ai XIANG ; Rong YAN ; Xiangmin MENG ; Chang LIU ; Wenhui LIU ; Kai JIANG
Chinese Journal of Modern Nursing 2024;30(18):2469-2475
Objective:To conduct scoping review of related researches on application of somatosensory games in frail elderly people, summarize the intervention elements, outcome indicators and adverse events of somatosensory games, so as to provide reference for related research.Methods:Literature on the application of somatosensory games in frail elderly people was searched from PubMed, Web of Science, Cochrane Library, Embase, CNKI, Wanfang Database, VIP database and China Biology Medicine disc, and the search period was from establishment of databases to July 10, 2023. The included literature was summarized and analyzed.Results:A total of 12 articles were included. Somatosensory game interventions were mainly based on existing commercial game equipment. The frequency of intervention was mainly 2 to 3 times a week, the duration was 20 to 60 minutes, and the course of treatment was 3 to 12 weeks. And most interventions had management or supervision mechanisms. Somatosensory games improved physical function and health-related quality of life in frail elderly people to some extent, but had no effect on mental health. Some studies reported fewer or even no adverse events related to somatosensory gaming intervention, and there were few reports on the feasibility and acceptability of the intervention.Conclusions:Somatosensory games have a certain effect on improving the physical function and health-related quality of life of frail elderly people, and there are fewer adverse events. Future research can draw on existing commercial gaming equipment to develop more scientific, practical and personalized somatosensory games, while improving the evaluation indicators and enhancing intervention effect.


Result Analysis
Print
Save
E-mail