1.Research advances in autoimmune pancreatitis with pancreatic exocrine insufficiency
Xiang AO ; Chenxiao LIU ; Xianda ZHANG ; Taojing RAN ; Chunhua ZHOU ; Duowu ZOU
Journal of Clinical Hepatology 2025;41(2):395-400
Autoimmune pancreatitis is a special type of chronic pancreatitis that can lead to abnormal pancreatic exocrine function in patients. Autoimmune pancreatitis comorbid with pancreatic exocrine insufficiency has a complex pathogenesis, and there is limited research on this topic, leading to the lack of understanding of such patients in clinical practice. This article introduces the epidemiology of autoimmune pancreatitis, briefly describes the pathogenesis of pancreatic exocrine insufficiency caused by autoimmune pancreatitis, and summarizes the various detection methods for pancreatic exocrine function, nutritional assessments, lifestyle management, and drug therapy, in order to strengthen the understanding of autoimmune pancreatitis comorbid with pancreatic exocrine insufficiency and improve the clinical diagnosis and treatment of pancreatic exocrine insufficiency.
2.YOLOX-SwinT algorithm improves the accuracy of AO/OTA classification of intertrochanteric fractures by orthopedic trauma surgeons.
Xue-Si LIU ; Rui NIE ; Ao-Wen DUAN ; Li YANG ; Xiang LI ; Le-Tian ZHANG ; Guang-Kuo GUO ; Qing-Shan GUO ; Dong-Chu ZHAO ; Yang LI ; He-Hua ZHANG
Chinese Journal of Traumatology 2025;28(1):69-75
PURPOSE:
Intertrochanteric fracture (ITF) classification is crucial for surgical decision-making. However, orthopedic trauma surgeons have shown lower accuracy in ITF classification than expected. The objective of this study was to utilize an artificial intelligence (AI) method to improve the accuracy of ITF classification.
METHODS:
We trained a network called YOLOX-SwinT, which is based on the You Only Look Once X (YOLOX) object detection network with Swin Transformer (SwinT) as the backbone architecture, using 762 radiographic ITF examinations as the training set. Subsequently, we recruited 5 senior orthopedic trauma surgeons (SOTS) and 5 junior orthopedic trauma surgeons (JOTS) to classify the 85 original images in the test set, as well as the images with the prediction results of the network model in sequence. Statistical analysis was performed using the SPSS 20.0 (IBM Corp., Armonk, NY, USA) to compare the differences among the SOTS, JOTS, SOTS + AI, JOTS + AI, SOTS + JOTS, and SOTS + JOTS + AI groups. All images were classified according to the AO/OTA 2018 classification system by 2 experienced trauma surgeons and verified by another expert in this field. Based on the actual clinical needs, after discussion, we integrated 8 subgroups into 5 new subgroups, and the dataset was divided into training, validation, and test sets by the ratio of 8:1:1.
RESULTS:
The mean average precision at the intersection over union (IoU) of 0.5 (mAP50) for subgroup detection reached 90.29%. The classification accuracy values of SOTS, JOTS, SOTS + AI, and JOTS + AI groups were 56.24% ± 4.02%, 35.29% ± 18.07%, 79.53% ± 7.14%, and 71.53% ± 5.22%, respectively. The paired t-test results showed that the difference between the SOTS and SOTS + AI groups was statistically significant, as well as the difference between the JOTS and JOTS + AI groups, and the SOTS + JOTS and SOTS + JOTS + AI groups. Moreover, the difference between the SOTS + JOTS and SOTS + JOTS + AI groups in each subgroup was statistically significant, with all p < 0.05. The independent samples t-test results showed that the difference between the SOTS and JOTS groups was statistically significant, while the difference between the SOTS + AI and JOTS + AI groups was not statistically significant. With the assistance of AI, the subgroup classification accuracy of both SOTS and JOTS was significantly improved, and JOTS achieved the same level as SOTS.
CONCLUSION
In conclusion, the YOLOX-SwinT network algorithm enhances the accuracy of AO/OTA subgroups classification of ITF by orthopedic trauma surgeons.
Humans
;
Hip Fractures/diagnostic imaging*
;
Orthopedic Surgeons
;
Algorithms
;
Artificial Intelligence
3.NINJ1 impairs the anti-inflammatory function of hUC-MSCs with synergistic IFN-γ and TNF-α stimulation.
Wang HU ; Guomei YANG ; Luoquan AO ; Peixin SHEN ; Mengwei YAO ; Yuchuan YUAN ; Jiaoyue LONG ; Zhan LI ; Xiang XU
Chinese Journal of Traumatology 2025;28(4):276-287
PURPOSE:
To investigate the regulatory role of nerve injury-induced protein 1 (NINJ1) in the anti-inflammatory function of human umbilical cord mesenchymal stem cells (hUC-MSCs) co-stimulated by interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α).
METHODS:
hUC-MSCs were expanded in vitro using standard protocols, with stem cell characteristics confirmed by flow cytometry and multilineage differentiation assays. The immunomodulatory properties and cellular activity of cytokine-co-pretreated hUC-MSCs were systematically evaluated via quantitative reverse transcription RT-qPCR, lymphocyte proliferation suppression assays, and Cell Counting Kit-8 viability tests. Transcriptome sequencing, Western blotting and small interfering RNA interference were integrated to analyze the regulatory mechanisms of NINJ1 expression. Functional roles of NINJ1 in pretreated hUC-MSCs were elucidated through gene silencing combined with lactate dehydrogenase release assays, Annexin V/Propidium Iodide apoptosis analysis, macrophage co-culture models, and cytokine Enzyme-Linked Immunosorbent Assay. Therapeutic efficacy was validated in a cecal ligation and puncture-induced septic mouse model: 80 mice were randomly allocated into 4 experimental groups (n=20/group): sham group (laparotomy without cecal ligation); phosphate-buffered saline-treated group (cecal ligation and puncture (CLP) + 0.1 mL phosphate-buffered saline); hUC-MSCs (small interfering RNA (siRNA)-interferon-gamma and tumor necrosis factor-alpha co-stimulation (IT))-treated group (CLP + hUC-MSCs transfected with scrambled siRNA); and hUC-MSCs (siNINJ1-IT)-treated group (CLP + hUC-MSCs with NINJ1-targeting siRNA).
RESULTS:
hUC-MSCs demonstrated compliance with International Society for Cellular Therapy criteria, confirming their stem cell identity. IFN-γ/TNF-α co-pretreatment enhanced the immunosuppressive capacity of hUC-MSCs, accompanied by the reduction of cellular viability, while concurrently upregulating pro-inflammatory cytokines such as interleukin-6 and interleukin-1β. This co-stimulation significantly elevated NINJ1 expression in hUC-MSCs, whereas genetic silencing of NINJ1 effectively suppressed pro-inflammatory cytokine production and attenuated damage-associated molecular patterns release through inhibition of programmed plasma membrane rupture. Furthermore, the NINJ1 interference potentiated the ability of cytokine-pretreated hUC-MSCs to suppress LPS-induced pro-inflammatory responses in RAW264.7 macrophages. In cecal ligation and puncture-induced sepsis model, NINJ1-silenced hUC-MSCs exhibited enhanced therapeutic efficacy, manifested by reduced systemic inflammation and multi-organ damage.
CONCLUSION
Our findings shed new light on the immunomodulatory functions of cytokine-primed MSCs, offering groundbreaking insights for developing MSC-based therapies against inflammatory diseases via interfering the expression of NINJ1.
Mesenchymal Stem Cells/drug effects*
;
Animals
;
Interferon-gamma/pharmacology*
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Humans
;
Mice
;
Umbilical Cord/cytology*
;
Cells, Cultured
;
Apoptosis
;
Male
4.Parkin inhibits iron overload-induced cardiomyocyte ferroptosis by ubiquitinating ACSL4 and modulating PUFA-phospholipids metabolism.
Dandan XIAO ; Wenguang CHANG ; Xiang AO ; Lin YE ; Weiwei WU ; Lin SONG ; Xiaosu YUAN ; Luxin FENG ; Peiyan WANG ; Yu WANG ; Yi JIA ; Xiaopeng TANG ; Jianxun WANG
Acta Pharmaceutica Sinica B 2025;15(3):1589-1607
Iron overload is strongly associated with heart disease. Ferroptosis is a new form of regulated cell death indicated in cardiac ischemia-reperfusion (I/R) injury. However, the specific molecular mechanism of myocardial injury caused by iron overload in the heart is still unclear, and the involvement of ferroptosis in iron overload-induced myocardial injury is not fully understood. In this study, we observed that ferroptosis participated in developing of iron overload and I/R-induced cardiomyopathy. Mechanistically, we discovered that Parkin inhibited iron overload-induced ferroptosis in cardiomyocytes by promoting the ubiquitination of long-chain acyl-CoA synthetase 4 (ACSL4), a crucial protein involved in ferroptosis-related lipid metabolism pathways. Additionally, we identified p53 as a transcription factor that transcriptionally suppressed Parkin expression in iron-overloaded cardiomyocytes, thereby regulating iron overload-induced ferroptosis. In animal studies, cardiac-specific Parkin knockout mice (Myh6-CreER T2 /Parkin fl/fl ) fed a high-iron diet presented more severe myocardial damage, and the high iron levels exacerbated myocardial I/R injury. However, the ferroptosis inhibitor Fer-1 significantly suppressed iron overload-induced ferroptosis and myocardial I/R injury. Moreover, Parkin effectively protected against impaired mitochondrial function and prevented iron overload-induced mitochondrial lipid peroxidation. These findings unveil a novel regulatory pathway involving p53-Parkin-ACSL4 in heart disease by inhibiting of ferroptosis.
5.Discovery of toad-derived peptide analogue targeting ARF6 to induce immunogenic cell death for immunotherapy of hepatocellular carcinoma.
Dihui XU ; Xiang LV ; Meng YU ; Ao TAN ; Jiaojiao WANG ; Xinyi TANG ; Mengyuan LI ; Wenyuan WU ; Yuyu ZHU ; Jing ZHOU ; Hongyue MA
Journal of Pharmaceutical Analysis 2025;15(3):101038-101038
Image 1.
6.The expression mechanism of programmed cell death 1 ligand 1 and its role in immunomodulatory ability of mesenchymal stem cells
Zhuo CHEN ; Meng-Wei YAO ; Xiang AO ; Qing-Jia GONG ; Yi YANG ; Jin-Xia LIU ; Qi-Zhou LIAN ; Xiang XU ; Ling-Jing ZUO
Chinese Journal of Traumatology 2024;27(1):1-10
Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.
7.Focusing on the evaluation of resectability of bile ducts-Application of medical imaging technology and 3D recon-struction in preoperative planning for radical resection of hi-lar cholangiocarcinoma
Xiang-Min DING ; Dou-Sheng BAI ; Guo-Qing JIANG ; Sheng-Jie JIN ; Chi ZHANG ; Qian WANG ; Bao-Huan ZHOU ; Ao-Qing WANG ; Ren-Jie LIU
Chinese Journal of Current Advances in General Surgery 2024;27(10):789-793
Hepatohilar cholangiocarcinoma is a common malignant tumor of the biliary system,and radical surgery is one of the important treatment methods.Due to the narrow space at the hi-lum and the high rate of anatomical variation,radical surgery is challenging.By using medical imag-ing technology and 3D reconstruction,surgeons can accurately determine the stage and classifica-tion of hilar cholangiocarcinoma preoperatively.They can assess the tumor's resectability by Ac-cording to the bile duct separation limit points(U point,P point)and anticipate the impact of portal vein,bile duct,and arterial variations on the surgical plan,thereby improving the rate of radical re-section and reducing complication rates.
8.Research Progress of Gas Raman Spectroscopy Detection Technology
Qi-Fan ZHOU ; Yu LU ; Ao LI ; Chang LIU ; Jia-He ZHANG ; Xi YANG ; Yan HUANG ; Xiang-Wei ZHAO
Chinese Journal of Analytical Chemistry 2024;52(7):925-936
Highly sensitive multiple detection and accurate identification of gases are of great importance in the fields of public safety,environmental protection,health diagnosis and industrial production.However,the traditional means of gas detection have many shortcomings such as low sensitivity,long time-consuming,bulky equipment,cumbersome processes and expensive costs.In recent years,Raman spectroscopy has become a hotspot in the field of gas detection because of its fast,sensitive and non-destructive characteristics,and has been more and more closely combined with artificial intelligence.This paper reviews the progress of Raman spectroscopy in gas detection in recent years,including conventional Raman spectroscopy and enhanced Raman spectroscopy,and also introduces the integration of artificial intelligence algorithms in gas Raman detection technology,and discusses the future development of gas Raman detection.
9.Comparison of Single or Double Titanium Mesh Cage for Anterior Reconstruction After Total En Bloc Spondylectomy for Thoracic and Lumbar Spinal Tumors
Ao LENG ; Qi WANG ; Jiacheng LI ; Yu LONG ; Song SHI ; Lingzhi MENG ; Mingming GUO ; Hailong YU ; Liangbi XIANG
Neurospine 2024;21(2):656-664
Objective:
To compare the clinical efficacy of anterior column reconstruction using single or double titanium mesh cage (TMC) after total en bloc spondylectomy (TES) of thoracic and lumbar spinal tumors.
Methods:
A retrospective cohort study was performed involving 39 patients with thoracic or lumbar spinal tumors. All patients underwent TES, followed by anterior reconstruction and screw-rod instrumentation via a posterior-only procedure. Twenty-two patients in group A were treated with a single TMC to reconstruct the anterior column, whereas 17 patients in group B were reconstructed with double TMCs.
Results:
The overall follow-up is 20.5 ± 4.6 months. There is no significant difference between the 2 groups regarding age, sex, body mass index, tumor location, operative time, and intraoperative blood loss. The time for TMC placement was significantly shortened in the double TMCs group (5.2 ± 1.3 minutes vs. 15.6 ± 3.3 minutes, p = 0.004). Additionally, postoperative neural complications were significantly reduced with double TMCs (5/22 vs. 0/17, p = 0.046). The kyphotic Cobb angle and mean intervertebral height were significantly corrected in both groups (p ≤ 0.001), without obvious loss of correction at the last follow-up in either group. The bone fusion rates for single TMC and double TMCs were 77.3% and 76.5%, respectively.
Conclusion
Using 2 smaller TMCs instead of a single large one eases the placement of TMC by shortening the time and avoiding nerve impingement. Anterior column reconstruction with double TMC is a clinically feasible, and safe alternative following TES for thoracic and lumbar tumors.
10.Small bowel capsule endoscopy image classification method based on Swin Transformer network and Adapt-RandAugment data augmentation approach
Rui NIE ; Xue-Si LIU ; Fei TONG ; Yuan-Yang DENG ; Xiang-Hua LIU ; Li YANG ; He-Hua ZHANG ; Ao-Wen DUAN
Chinese Medical Equipment Journal 2024;45(6):9-16
Objective To propose a method for classifying small bowel capsule endoscopy images by combining the Swin Transformer network with an improved Adapt-RandAugment data augmentation approach,aiming to enhance the accuracy and efficiency of small bowel lesion classification and recognition.Methods An Adapt-RandAugment data augmentation approach was formulated based on the RandAugment data enhancement sub-strategy and the principles of no feature loss and no distortion when enhancing small bowel capsule endoscopy images.In the publicly available Kvasir-Capsule dataset of small bowel capsule endoscopic images,the Adapt-RandAugment data augmentation approach was trained based on the Swin Transformer network,and the convolutional neural networks ResNet152 and DenseNet161 were used as the benchmarks to validate the combined Swin Transformer network and Adapt-RandAugment data augmentation approach for small bowel capsule endoscopy image classification.Results The proposed algorithm gained advantages over ResNet152 and DenseNet161 networks in the indicators,which had the macro average precision(MAC-PRE),macro average recall(MAC-REC),macro average F1 score(MAC-Fi-S)being 0.383 2,0.314 8 and 0.290 5 respectively,the micro average precision(MIC-PRE),micro average recall(MIC-REC)and micro average F1 score(MIC-Fi-S)all being 0.755 3,and the Matthews correlation coe-fficient(MCC)being 0.452 3.Conclusion The proposed small bowel capsule endoscopy image classification method based on Swin Transformer network and Adapt-RandAugment data augmentation approach behaves well in classified recognition efficiency and accuracy.[Chinese Medical Equipment Journal,2024,45(6):9-16]

Result Analysis
Print
Save
E-mail