1.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
2.Research on Regulatory Mechanism of Verbenalin on HCoV-229E-infected Macrophage Injury Based on Mitophagy
Qiyue SUN ; Lei BAO ; Zihan GENG ; Ronghua ZHAO ; Shuran LI ; Xihe CUI ; Jingsheng ZHANG ; Xian LIU ; Rui XIE ; Xiaolan CUI ; Shanshan GUO ; Jing SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):29-37
ObjectiveTo investigate the protective effect and mechanism of verbenalin on mouse mononuclear macrophage leukemia cells (RAW264.7) damaged by human coronavirus (HCoV)-229E infection, thereby providing experimental evidence for its development and application. MethodsRAW264.7 macrophages were infected with different concentrations of HCoV-229E to establish a coronavirus-induced macrophage injury model using the cell counting kit-8 (CCK-8) assay for assessing cell proliferation and viability. Cells were randomly divided into four groups: normal control, verbenalin group (125 μmol·L-1), model group (HCoV-229E), and HCoV-229E + verbenalin group (HCoV-229E + 125 μmol·L-1 verbenalin). Cell viability was measured using the CCK-8 assay, and the maximum non-toxic concentration (CC0), half-maximal cytotoxic concentration (CC50), half-maximal effective concentration (EC50), and selectivity index (SI) of verbenalin were calculated. Calcein/PI double staining was used to assess cell viability and cytotoxicity, and JC-1 staining was applied to evaluate changes in mitochondrial membrane potential (MMP). mito-Keima adenovirus labeling was used to assess mitophagy levels in each group. ResultsA macrophage infection model was successfully established by infecting RAW264.7 cells with the original concentration of HCoV-229E for 36 h. The CC0 of verbenalin was 125 μmol·L-1. The CC50 was 448.25 μmol·L-1. The EC50 against HCoV-229E-infected cells was 46.28 μmol·L-1, and the SI was 9.68. Compared with the normal group, the model group showed significantly reduced cell survival rate (P<0.01), increased cell death rate (P<0.01), decreased MMP (P<0.01), and suppressed mitophagy (P<0.01). In contrast, verbenalin treatment significantly improved cell survival rate (P<0.01), reduced cell death rate (P<0.01), alleviated MMP loss (P<0.01), and enhanced mitophagy levels (P<0.01) compared with the model group. ConclusionVerbenalin can enhance the survival rate of macrophages following HCoV-229E infection. The underlying mechanism may be associated with the activation of mitophagy, maintenance of MMP stability, and alleviation of mitochondrial damage.
3.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
4.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
5.Research on Regulatory Mechanism of Verbenalin on HCoV-229E-infected Macrophage Injury Based on Mitophagy
Qiyue SUN ; Lei BAO ; Zihan GENG ; Ronghua ZHAO ; Shuran LI ; Xihe CUI ; Jingsheng ZHANG ; Xian LIU ; Rui XIE ; Xiaolan CUI ; Shanshan GUO ; Jing SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):29-37
ObjectiveTo investigate the protective effect and mechanism of verbenalin on mouse mononuclear macrophage leukemia cells (RAW264.7) damaged by human coronavirus (HCoV)-229E infection, thereby providing experimental evidence for its development and application. MethodsRAW264.7 macrophages were infected with different concentrations of HCoV-229E to establish a coronavirus-induced macrophage injury model using the cell counting kit-8 (CCK-8) assay for assessing cell proliferation and viability. Cells were randomly divided into four groups: normal control, verbenalin group (125 μmol·L-1), model group (HCoV-229E), and HCoV-229E + verbenalin group (HCoV-229E + 125 μmol·L-1 verbenalin). Cell viability was measured using the CCK-8 assay, and the maximum non-toxic concentration (CC0), half-maximal cytotoxic concentration (CC50), half-maximal effective concentration (EC50), and selectivity index (SI) of verbenalin were calculated. Calcein/PI double staining was used to assess cell viability and cytotoxicity, and JC-1 staining was applied to evaluate changes in mitochondrial membrane potential (MMP). mito-Keima adenovirus labeling was used to assess mitophagy levels in each group. ResultsA macrophage infection model was successfully established by infecting RAW264.7 cells with the original concentration of HCoV-229E for 36 h. The CC0 of verbenalin was 125 μmol·L-1. The CC50 was 448.25 μmol·L-1. The EC50 against HCoV-229E-infected cells was 46.28 μmol·L-1, and the SI was 9.68. Compared with the normal group, the model group showed significantly reduced cell survival rate (P<0.01), increased cell death rate (P<0.01), decreased MMP (P<0.01), and suppressed mitophagy (P<0.01). In contrast, verbenalin treatment significantly improved cell survival rate (P<0.01), reduced cell death rate (P<0.01), alleviated MMP loss (P<0.01), and enhanced mitophagy levels (P<0.01) compared with the model group. ConclusionVerbenalin can enhance the survival rate of macrophages following HCoV-229E infection. The underlying mechanism may be associated with the activation of mitophagy, maintenance of MMP stability, and alleviation of mitochondrial damage.
6.Construction and Application of An Animal Model of Respiratory Syncytial Virus Infection Based on Humanized IGF1R Mice
Xiaowei YANG ; Dan XIE ; Shuran LI ; Lei BAO ; Zihan GENG ; Xian LIU ; Mengyao CUI ; Yaxin WANG ; Shan CAO ; Xiaolan CUI ; Jing SUN ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):48-53
ObjectiveTo construct an animal model of respiratory syncytial virus(RSV)-infected pneumonia suitable for preclinical studies. MethodsThe virulence of RSV to the four cell lines was observed by cytopathic effect (CPE), and 50% tissue culture infective dose(TCID50) was calculated. Twenty BALB/c mice were randomly divided into a normal group and a model group. Six BALB/c-hIGF1R mice served as the humanized IGF1R model group. Except for the normal group, the other groups received intranasal RSV infection on days 1 and 3 to establish a viral pneumonia model. The efficacy of establishing an RSV-induced pneumonia animal model based on humanized insulin-like growth factor 1 receptor (IGF1R) mice was evaluated by measuring organ indices, peripheral blood lymphocyte percentages, pulmonary pathology and imaging, and pulmonary viral load. Additionally, ten BALB/c mice served as normal group, and thirty-two BALB/c-hIGF1R mice were randomly assigned to humanized IGF1R model group, ribavirin group (82.5 mg·kg-¹·d-¹), and high and low dose groups of Lianhua Qingwen (3.3 mg·kg-¹·d-¹ , 1.65 mg·kg-¹·d-¹), with 8 mice per group. The viral load in lung tissue was measured after ribavirin and Lianhua Qingwen intervention, and the model was applied to the evaluation of anti-RSV drugs. ResultsIn the lungs of the humanized IGF1R model group, large solid and diffuse ground-glass shadows were seen, and the lung volume was significantly increased (P<0.01). The lung index was significantly increased (P<0.01), and both the spleen index and thymus index were significantly decreased (P<0.01). The percentages of CD3+ and CD4+T cells were significantly decreased (P<0.05), and there was a large amount of inflammation and stasis in the perivascular area of the lung tissue, which was predominantly characterized by lymphocytes. The endothelium of blood vessels was partially detached, with a small number of eosinophils. After infecting BALB/c-hIGF1R mice with RSV, the expression of viral nucleic acids in the lung tissue of the mice was significantly increased, with significant differences compared with the normal group (P<0.01). The expression of viral nucleic acids in the ribavirin group and the high and low dose groups of Lianhua Qingwen was significantly reduced, with significant differences compared with the normal group (P<0.01). ConclusionHumanized IGF1R mice are more susceptible to respiratory SVC, and the animal model of RSV-infected pneumonia based on humanized IGF1R mice was successfully constructed, which is suitable for the evaluation of anti-RSV drugs.
7.Establishment and Application of Animal Models for Disease-syndrome Combination in Viral Pneumonia: A Review
Dan XIE ; Shuran LI ; Zihan GENG ; Lei BAO ; Jing SUN ; Ronghua ZHAO ; Xian LIU ; Mengyao CUI ; Xiaowei YANG ; Xiaolan CUI ; Shanshan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):61-69
Currently, viral pneumonia (VP) presents a major challenge to global public health. Traditional Chinese medicine (TCM) prevention and treatment of VP is guided by the core concept of strengthening vital energy and eliminating pathogenic factors rather than targeting specific pathogens, alongside a holistic approach of syndrome differentiation and treatment. By summarizing the clinical syndromes of patients, the core pathogenesis was clarified to achieve individualized therapy. Animal models for disease-syndrome combination integrate the etiology and pathogenesis of VP and simulate the individualized manifestations of patients at different disease stages, providing an experimental platform for elucidating the theoretical basis of TCM in treating VP and promoting the development of effective TCM formulations. However, there are limitations in the application and promotion of disease-syndrome combination animal models due to the lack of standardization and normalization of model construction systems, which arise from diverse species selection, compound modeling methods, and multidimensional evaluation indicators. This paper systematically reviewed the recent research on animal models for disease-syndrome combination in VP from the perspective of species selection, modeling methods, evaluation indicators, and application status. Furthermore, it summarized the advantages and limitations of existing models, identifies future directions for improvement, and proposes optimization strategies. This review provides a reference for establishing standardized and normalized animal models for disease-syndrome combinations in VP, supporting the theoretical modernization of TCM in preventing and controlling emerging respiratory infectious diseases, and contributing to the development of new TCM drugs.
8.Proteomics-based Investigation of Therapeutic Effect and Mechanism of Verbenalin on Lung Injury in Mice Infected with Human Coronavirus-229E
Qiyue SUN ; Shanshan GUO ; Shuangrong GAO ; Lei BAO ; Zihan GENG ; Shuran LI ; Ronghua ZHAO ; Jingsheng ZHANG ; Xian LIU ; Rui XIE ; Xiaolan CUI ; Jing SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):69-78
ObjectiveTo evaluate the pharmacological effects of verbenalin on both in vitro and in vivo infection models of human coronavirus 229E (HCoV-229E) and to preliminarily explore the antiviral mechanism of verbenalin through proteomic analysis. MethodsIn vitro, the cell counting kit-8 (CCK-8) for cell proliferation and viability assessment was used to establish a model of HCoV-229E-induced injury in human lung adenocarcinoma cells(A549). A549 cells were divided into five groups: normal group, model group, and three verbenalin treatment groups (125, 62.5, and 31.25 μmol·L-1). The cell protective activity of verbenalin was evaluated through cell viability assay and immunofluorescence staining. In vivo, 30 BALB/c mice were randomly divided into normal group, model group, chloroquine group, and high-dose, low-dose verbenalin groups (40 and 20 mg·kg-1), with six mice per group. An HCoV-229E-induced mouse lung injury model was established to evaluate the therapeutic effects of verbenalin. Lung injury was assessed by detecting the lung index and lung inhibition rate. The severity of pulmonary inflammation cytokines was measured by enzyme-linked immunosorbent assay (ELISA), while the lung morphology and structure were analyzed by micro-computed tomography (Micro-CT). Hematoxylin and eosin (HE) staining was used to assess histopathological changes in lung tissue. Additionally, four-dimensional data-independent acquisition (4D-DIA) proteomics was employed to preliminarily explore the potential mechanisms of verbenalin in treating HCoV-229E-induced lung injury in mice, through differential protein expression screening, functional annotation, enrichment analysis, and protein-protein interaction network analysis. ResultsThe A549 cells were infected with HCoV-229E at the original viral titer for 36 hours to establish an in vitro infection model. The maximum non-toxic concentration of verbenalin was 125 μmol·L-1, and the half-maximal cytotoxic concentration (CC50) was 288.8 μmol·L-1. Compared with the normal group, the model group showed a significant decrease in cell viability (P<0.01), a significant increase in the proportion of dead cells (P<0.01), mitochondrial damage, and a significant reduction in mitochondrial membrane potential (P<0.01). After treatment with different concentrations of verbenalin (125, 62.5, and 31.25 μmol·L-1), cell viability was significantly increased (P<0.01), and the proportion of dead cells was reduced (P<0.01), with mitochondrial membrane potential restored (P<0.01). In vivo experiments further confirmed the therapeutic effect of verbenalin on HCoV-229E-infected mice. Compared to the normal group, the model group showed a significant increase in the lung index (P<0.01), severe lung tissue injury, lung volume enlargement, and a significant increase in the expression of inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) (P<0.01). In contrast, in the verbenalin treatment groups, these pathological changes were significantly improved, with a reduction in the lung index (P<0.01), alleviation of lung tissue injury, reduced lung volume enlargement, and a significant decrease in inflammatory cytokine expression (P<0.01). Proteomics analysis revealed that, compared to the normal group, the model group showed enrichment in several antiviral immune-related signaling pathways, including the nuclear factor-κB (NF-κB) signaling pathway (P<0.05). Compared to the model group, the verbenalin treatment group showed enrichment in several signaling pathways related to inflammatory response and autophagy (P<0.05), suggesting that verbenalin may exert its antiviral and anti-inflammatory effects by regulating these pathways. ConclusionVerbenalin demonstrates significant therapeutic effects in both in vitro and in vivo HCoV-229E infection models, with its mechanism likely related to the NOD-like receptor protein 3 (NLRP3) inflammasome pathway and mitochondrial autophagy.
9.Value of serum levels in predicting lower extremity deep vein thrombosis after hip joint surgery in the elderly
Ying YANG ; Fu-Yi YIN ; Yuan-Xian LENG ; Guo-Hong LI
China Journal of Orthopaedics and Traumatology 2024;37(5):500-504
Objective To explore the value of serum D-dimer(D-D),fibrinogen(FIB),platelet(PLT),C-reactive pro-tein(CRP)and tissue plasminogen activator inhibitor(PAI)-1 levels in predicting lower extremity deep vein thrombosis(DVT)after hip joint surgery in the elderly.Methods A retrospective analysis was performed on 165 elderly patients with hip joint surgery admitted from February 2020 to May 2022,including 89 males and 76 females,aged from 60 to 75 years old with an average of(66.43±5.48)years,and there were 102 cases of femoral neck fracture and 63 cases of femoral head necrosis.Serum levels of D-D,FIB,PLT,CRP and PAI-1 tests were performed in all patients within 24 hours after admission,and the patients were divided into DVT group and non-DVT group according to whether they developed DVT.Results The levels of D-D,FIB,PLT,CRP,and PAI-1 in the DVT group were higher than those in the non-DVT group(P<0.001).Spearman analysis showed that DVT was positively correlated with PLT,CRP,D-D,FIB,and PAI-1 levels(r=0.382,0.213,0.410,0.310,0.353,all P<0.001).The results of binary Logistic regression analysis showed that D-D and PLT were independent factors affecting the occurrence of DVT(OR=0.038,0.960,P=0.032,0.011).The area under curve(AUC)of D-D,FIB,PLT,CRP,PAI-1,and the five combined predictions for DVT were 0.843,0.692,0.871,0.780,0.819,and 0.960,respectively.The AUC of the five combined predictions was higher than that of the single prediction(P<0.05).Conclusion D-D,FIB,PLT,CRP and PAI-1 are effective in predicting DVT after hip surgery in the elderly,and the combined prediction of the five factors has higher effi-cacy.
10.Comparsion of bone setting technique combined with percutaneous vertebroplasty and percutaneous kyphoplasty for the treatment of osteoporotic vertebral compression fractures
Wen-Chao LI ; Peng-Fei YU ; Guang-Ye ZHU ; Hong GUO ; Ya-Hao LI ; Xian-Da ZHANG ; Chao LI ; Hong JIANG ; Hong-Wei LI
China Journal of Orthopaedics and Traumatology 2024;37(6):546-552
Objective To explore clinical efficacy of osteoplasty combined with percutaneous vertebroplasty(PVP)and percutaneous kyphoplasty(PKP)alone in treating osteoporosis vertebral compression fractures(OVCFs).Methods The clini-cal data of 80 patients with single-level OVCFs treated from January 2021 to June 2022 were retrospectively analyzed,and were divided into treatment group and control group according to different surgical methods,40 patients in each group.In treatment group,there were 24 males and 16 females,aged from 60 to 83 years old with an average of(70.43±7.31)years old;bone min-eral density ranged from-3.30 to-2.50 SD with an average of(-2.84±0.24)SD;1 patient with T10,4 patients with T11,11 pa-tients with T12,7 patients with L1,7 patients with L2,5 patients with L3,3 patients with L4,2 patients with L5;bone setting tech-nique combined with PVP were performed.In control group,there were 27 males and 13 females,aged from 60 to 82 years old with an average of(68.98±6.94)years old;bone mineral density ranged from-3.40 to-2.50 SD with an average of(-2.76±0.23)SD;2 patients with T10,3 patients with T11,13 patients with T12,11 patients with L1,5 patients with L2,3 patients with L3,2 patients with L4,1 patient with L5;simple PKP were peformed.Visual analogue scale(VAS)and lumbar Oswestry disability in-dex(ODI)were compared between two groups before operation,3 days,3 and 12 months after operation.The changes of local kyphotic angle,vertebral wedge angle and vertebral anterior margin height ratio were compared between two groups before op-eration,3 days and 12 months after operation.Results All patients were successfully completed operation.Treatment group were followed up from 13 to 22 months with an average of(16.82±2.14)months,and control group were followed up from 13 to 23 months with an average of(16.45±2.56)months.Three patients were occurred bone cement leakage in treatment group,while 1 patient were occurred bone cement leakage and 1 patient occurred sensory disturbance of lower limb skin in control group;there were no significant difference in complications between two groups(P>0.05).There were no significant difference in preoperative VAS and ODI between two groups(P>0.05).At 3 days after operation,VAS of treatment group 3.68±0.62 was significantly higher than that of control group 4.00±0.72(P<0.05).There were no significant difference in VAS and ODI be-tween two groups at 3 and 12 months after operation(P>0.05).There were no significant difference in local kyphotic angle,vertebral wedge angle and vertebral anterior margin height between two groups at 3 days and 12 months after operation(P>0.05).Conclusion Compared with PKP,bone setting manipulation combined with PVP for the treatment of OVCFs has advan-tages in early postoperative pain relief.In terms of vertebral height recovery,bone setting manipulation combined with PVP and PKP alone have similar clinical effects.

Result Analysis
Print
Save
E-mail