1.Current status and suggestions on regulation of traditional Chinese medicine raw materials and preparations under regulatory system of drugs.
Li-Ping QU ; Yong-Dan XU ; Wei-Jing HE ; Ding-Kun ZHANG ; Nan YANG ; Min-Xian SONG ; Zhi-Qiang MIN ; Ting-Mo ZHANG
China Journal of Chinese Materia Medica 2025;50(3):824-832
At present, the cause of traditional Chinese medicine(TCM) in China has entered a new period of high-quality development. How to strengthen the foundation for the TCM industry from the source is an important issue that deserves the attention of the authorities, industry, and academia. This study systematically analyzed the regulatory system of TCM raw materials and preparations. The study took the TCM industry chain and the product life cycle as a clue and focused on the dimensions of TCM resource protection and plant cultivation(farming), production and quality supervision of TCM raw materials and preparations, and their market access and distribution. It analyzed the current situation of the regulation of TCM raw materials and preparations under the regulatory system of drugs, discussed the main problems, and put forward corresponding suggestions. The results can provide an important reference value for the subsequent improvement of the regulatory system of drugs and the construction of a prominent regulatory system of drugs in accordance with TCM characteristics.
Drugs, Chinese Herbal/economics*
;
Medicine, Chinese Traditional/standards*
;
China
;
Quality Control
;
Humans
;
Plants, Medicinal/chemistry*
2.Study on Differential DNA Methylation Profiles of Patients with High-Altitude Polycythemia.
Jun-Hua JI ; Min YANG ; Yan JIANG ; Ting-Xian YANG ; Xiao-Jing MA ; Qi-Chao YIN ; Hong-Wei YIN ; Lin-Hua JI
Journal of Experimental Hematology 2025;33(2):580-586
OBJECTIVE:
To investigate the whole-genome differential methylation profile of patients with high-altitude polycythemia (HAPC).
METHODS:
In this study, a total of 20 adult male patients with HAPC were included, including 10 Tibetan and 10 Han patients. The control group consisted of 20 healthy adult males, including 10 Tibetan and 10 Han patients. Peripheral blood was collected from each group for DNA extraction and quality inspection, and DNA libraries were constructed. The differential methylation regions (DMRs) between groups were detected using reduced representation bisulfite sequencing, with enriched regions compared to those of the control group. The differential enrichment regions were selected, and the intersection of the enriched regions was associated with genes. The methylation enrichment regions that differed significantly between groups were filtered based on the number of enriched samples in the enriched regions between the groups. GO, KEGG functional, and pathway analysis were performed on the differentially associated gene sets to reveal significant differences between the patients and control groups at the functional and pathway levels.
RESULTS:
In comparison with the control group, 17 152 sites with more than 25% difference and 15 558 sites with less than -25% difference were identified in Tibetan patients. The top 5 genes with the largest methylation differences between the two groups were MCCC2, RP3-399L15.3, ZNF621, RP11-394A14.2 and SLC39A10. The top significantly different pathways annotated in the differentially expressed genes pathway was serotonergic synapse. In comparison with the control group, 2 687 CpG sites with a greater than 25% difference and 2 602 CpG sites with a less than -25% difference were identified in Han patients. The top 5 genes with the largest methylation differences between the two groups were NAA25, CORO2B, PDC, ZNF853, and MLLT10. The top significantly different pathways annotated in the differentially expressed genes pathway were glutamatergic synapse, retrograde endocannabinoid signaling, Rap1 signaling pathway and cholinergic synapse. In comparison with the control group, 3 895 CpG sites with a greater than 25% difference and 3 969 CpG sites with a less than -25% difference were identified in HAPC patients. The maximum methylation difference between the two groups could reach 78.1%, while the minimum was -42.6%. The top 5 genes with the largest methylation differences between the two groups were MCCC2, ARSJ, CTNNA3, SLC39A10, and SWAP70. The top significantly different pathways annotated in the differentially expressed genes pathway was signaling pathways regulating pluripotency of stem cells.
CONCLUSION
The occurrence of HAPC may be related to abnormal changes in DNA methylation, and methylation sites may be helpful for the early diagnosis of HAPC.
Humans
;
DNA Methylation
;
Altitude
;
Polycythemia/genetics*
;
Male
;
Adult
;
CpG Islands
3.Phenotypic Function of Legionella pneumophila Type I-F CRISPR-Cas.
Ting MO ; Hong Yu REN ; Xian Xian ZHANG ; Yun Wei LU ; Zhong Qiu TENG ; Xue ZHANG ; Lu Peng DAI ; Ling HOU ; Na ZHAO ; Jia HE ; Tian QIN
Biomedical and Environmental Sciences 2025;38(9):1105-1119
OBJECTIVE:
CRISPR-Cas protects bacteria from exogenous DNA invasion and is associated with bacterial biofilm formation and pathogenicity.
METHODS:
We analyzed the type I-F CRISPR-Cas system of Legionella pneumophila WX48, including Cas1, Cas2-Cas3, Csy1, Csy2, Csy3, and Cas6f, along with downstream CRISPR arrays. We explored the effects of the CRISPR-Cas system on the in vitro growth, biofilm-forming ability, and pathogenicity of L. pneumophila through constructing gene deletion mutants.
RESULTS:
The type I-F CRISPR-Cas system did not affect the in vitro growth of wild-type or mutant strains. The biofilm formation and intracellular proliferation of the mutant strains were weaker than those of the wild type owing to the regulation of type IV pili and Dot/Icm type IV secretion systems. In particular, Cas6f deletion strongly inhibited these processes.
CONCLUSION
The type I-F CRISPR-Cas system may reduce biofilm formation and intracellular proliferation in L. pneumophila.
Legionella pneumophila/pathogenicity*
;
CRISPR-Cas Systems
;
Biofilms/growth & development*
;
Phenotype
;
Bacterial Proteins/metabolism*
;
Gene Deletion
4.Coronary Computed Tomographic Angiography-Derived Radiomics Combing CT-Fractional Flow Reserve for Detecting Hemodynamically Significant Coronary Artery Disease.
Yan YI ; Cheng XU ; Wei WU ; Ying-Qian GE ; Ke-Ting XU ; Xian-Bo YU ; Yi-Ning WANG
Acta Academiae Medicinae Sinicae 2025;47(4):542-549
Objective To develop a diagnostic model combining the CT angiography(CCTA)-derived myocardial radiomics signatures with the CT-derived fractional flow reserve(CT-FFR)based on coronary CCTA and investigate the diagnostic accuracy of the hybrid model for hemodynamically significant coronary artery disease(CAD).Methods The patients presenting stable angina pectoris,diagnosed with CAD,and clinically referred for CCTA examination and invasive coronary angiography were prospectively recruited.Radiomics features of the left ventricular myocardium were extracted from the three main perfusion territories demarcated according to the coronary blood supply.The extracted features were first selected by the minimum redundancy maximum relevance feature ranking method.A least absolute shrinkage and selection operator Logistic regression algorithm with leave-one-out cross-validation was then employed to construct a radiomics model.The CT-FFR value was generated for each blood vessel.The area under the receiver operating characteristics curve(AUC_ROC),sensitivity,and specificity were adopted to evaluate the performance of each model against the reference standard invasive coronary angiography/FFR.Results A total of 70 patients[42 men and 28 women;(61±10) years old] were included in this study and complemented CCTA examination,with 175 vessels and the corresponding myocardial territories undergoing invasive coronary angiography/FFR.A total of 1 656 specific radiomics parameters were extracted,from which 14 features were selected to establish the radiomics model.The AUC_ROC,sensitivity,and specificity were 0.797(95%CI=0.732-0.861),77.1%,and 73.7%for the radiomics model,0.892(95%CI=0.841-0.943),81.4%,and 88.8%for the CT-FFR model,and 0.928(95%CI=0.890-0.965),83.3%,and 88.4%for the hybrid model,respectively.The hybrid model outperformed the radiomics model and CT-FFR alone(P=0.040).Conclusions The radiomics signatures of the vessel-related myocardium from CCTA could provide incremental value to the diagnostic performance of CT-FFR and improve vessel-specific ischemia detection.The hybrid model combining CT-FFR with radiomics signatures is potentially feasible for improving the diagnostic accuracy for hemodynamically significant CAD.
Coronary Angiography/methods*
;
Tomography, X-Ray Computed
;
Humans
;
Hemodynamics
;
Coronary Artery Disease/diagnostic imaging*
;
Male
;
Female
;
Middle Aged
;
Aged
;
Radiomics
;
Angina Pectoris/diagnostic imaging*
;
China
;
Image Processing, Computer-Assisted
;
Coronary Vessels/diagnostic imaging*
5.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.
6.Curcumin promotes osteogenic differentiation of bone marrow mesenchymal stem cells under high glucose environment by regulating HO-1
Xian-Ting WEI ; Bao-Kang CHEN ; Xin DONG ; Kang YAN ; Xiao-Ping ZHANG ; Bo LIAO
Journal of Regional Anatomy and Operative Surgery 2024;33(9):783-787
Objective To study the effect of curcumin on osteogenic differentiation of human bone marrow mesenchymal stem cells(hBMSCs)in high glucose condition and its mechanism.Methods The cultured hBMSCs were divided into the normal group,high glucose group,and high glucose+curcumin group.The early osteogenic differentiation level of the cells in each group was assessed by detecting alkaline phosphatase(ALP)activity.Alizarin red staining was used to evaluate the formation of mineralized nodules in the late stage of osteo-genic differentiation.The expression of osteogenic-related genes,including Runt-related transcription factor 2(Runx2),osteocalcin(OCN),and type Ⅰ collagen(COL-1),was detected by RT-PCR after 21 days of osteogenic induction.Western blot was used to detect the expression of heme oxygenase-1(HO-1)in each group.Furthermore,an HO-1 small interfering RNA(siRNA)model was constructed and its interference efficiency was assessed.The expression levels of osteogenesis-related proteins(Runx2,OCN,and COL-1)between the high glucose+curcumin group and high glucose+curcumin+siHO-1 group were compared.Results Compared with the normal group,the high glucose group showed decreased ALP activity,reduced formation of mineralized nodules,decreased expression of osteogenic-related genes(Runx2,OCN,and COL-1),and inhibited expression of HO-1(P<0.05).Compared with the empty vector group,the siHO-1 group showed significantly reduced expression of HO-1 in cells,indicating successful siRNA interference(P<0.01).Compared with the high glucose+curcumin group,the expression levels of osteogenesis-related proteins(OCN,COL-1,and Runx2)were all decreased in the high glucose+curcumin+siHO-1 group(P<0.05).Conclusion Curcumin can promote osteogenic differentiation of hBMSCs under high glucose environment,which is related to the expression of HO-1.
7.Efficacy of 595-nm pulsed dye laser in the treatment of port-wine stains in 155 infants and toddlers: a retrospective analysis
Ting ZHANG ; Lian LIU ; Haotian CHEN ; Danfeng WEI ; Xu LIU ; Ping DIAO ; Qingfeng LIU ; Xian JIANG
Chinese Journal of Dermatology 2024;57(7):610-615
Objective:To investigate the clinical efficacy of 595-nm pulsed dye laser (PDL) in the treatment of port-wine stains (PWS) in infants and toddlers.Methods:A retrospective analysis was conducted based on clinical data from 155 infants and toddlers with PWS treated with 595-nm PDL at West China Hospital of Sichuan University from January 2013 to October 2023, and the efficacy was evaluated according to pre- and post-treatment photographs. The children were grouped according to gender, age, lesion color, lesion area, lesion sites, and number of treatment sessions, separately, and the differences were analyzed between different groups. Further analysis was conducted to determine factors affecting efficacy of PDL for PWS. Adverse reactions after treatment were recorded. The Mann-Whitney U test and Kruskal-Wallis H test were used to analyze unidirectional ordered R × C contingency table data, the Bonferroni approach was used for multiple comparisons, and multivariate ordered logistic regression analysis was performed for multifactorial analysis. Results:After the treatment with 595-nm PDL, 135 infants and toddlers with PWS showed good response, with an overall response rate of 87.1%. Univariate analysis indicated that the efficacy was associated with the lesion area ( P = 0.016) and the number of treatment sessions ( P < 0.001), but not with age ( P = 0.340), gender ( P = 0.164), lesion color ( P = 0.530), or lesion sites ( P = 0.077), and the smaller the lesion area, the more the treatment sessions, the better the therapeutic effect. Multivariate ordered logistic regression analysis further confirmed the correlations of efficacy with lesion area ( P = 0.010) and number of treatment sessions ( P < 0.001). Adverse reactions occurred in 5 (3.2%) cases of PWS, including 2 (1.3%) of hypopigmentation, 2 (1.3%) of hyperpigmentation, and 1 (0.6%) of scar formation. Conclusion:The 595-nm PDL was safe and effective for the treatment of PWS in infants and toddlers with few adverse reactions, making it a reliable therapeutic option.
8.Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-ββ1/MAPK and AMPK/SIRT1/PGC-1αα/HO-1/ NF-κκB pathways
Wei HAO ; Ting-ting YU ; Wei LI ; Guo-guang WANG ; Hui-xian HU ; Ping-ping ZHOU
The Korean Journal of Physiology and Pharmacology 2024;28(6):559-568
The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model.The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA.Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/ NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.
9.Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-ββ1/MAPK and AMPK/SIRT1/PGC-1αα/HO-1/ NF-κκB pathways
Wei HAO ; Ting-ting YU ; Wei LI ; Guo-guang WANG ; Hui-xian HU ; Ping-ping ZHOU
The Korean Journal of Physiology and Pharmacology 2024;28(6):559-568
The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model.The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA.Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/ NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.
10.Hemin attenuates bleomycin-induced lung fibrosis in mice by regulating the TGF-ββ1/MAPK and AMPK/SIRT1/PGC-1αα/HO-1/ NF-κκB pathways
Wei HAO ; Ting-ting YU ; Wei LI ; Guo-guang WANG ; Hui-xian HU ; Ping-ping ZHOU
The Korean Journal of Physiology and Pharmacology 2024;28(6):559-568
The objective of this study was to investigate the protective effect and potential mechanism of action of hemin on bleomycin-induced pulmonary fibrosis in mice. Male C57BL/6 mice were randomly divided into control, bleomycin and bleomycin + hemin groups. Mice in the bleomycin and bleomycin + hemin groups were injected intratracheally with bleomycin to establish the pulmonary fibrosis model.The bleomycin + hemin group mice were injected intraperitoneally with hemin starting 7 days before modeling until the end of Day 21 after modeling. Pathological changes in lung tissue were assessed by HE and Masson staining. Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were determined in lung tissue. Immunohistochemistry was performed to assess the expression of α-SMA and collagen I. The serum levels of IL-6 and TNF-α were measured via ELISA.Western blotting was used to determine the expression of TGF-β1, SIRT1, PGC-1α and HO-1 and the phosphorylation levels of p38, ERK1/2, JNK, AMPK and NF-κB p65 in lung tissue. Hemin significantly reduced lung indices, increased terminal body weight. It also significantly increased SOD and CAT activities; decreased MDA, IL-6 and TNF-α levels; reduced the levels of α-SMA and collagen I-positive cells; upregulated SIRT1, PGC-1α and HO-1 expression; promoted AMPK phosphorylation; and downregulated TGF-β1 expression and p38, ERK1/2, JNK and NF-κB p65 phosphorylation. Hemin might attenuate oxidative damage and inflammatory responses and reduces extracellular matrix deposition by regulating the expression and phosphorylation of proteins associated with the TGF-β1/MAPK and AMPK/SIRT1/PGC-1α/HO-1/ NF-κB pathways, thereby alleviating bleomycin-induced pulmonary fibrosis.

Result Analysis
Print
Save
E-mail