1.Prediction of quality markers for cough-relieving and phlegm-expelling effects of Kening Granules based on plasma pharmacology combined with network pharmacology and pharmacokinetics.
Qing-Qing CHEN ; Yuan-Xian ZHANG ; Qian WANG ; Jin-Ling ZHANG ; Lin ZHENG ; Yong HUANG ; Yang JIN ; Zi-Peng GONG ; Yue-Ting LI
China Journal of Chinese Materia Medica 2025;50(4):959-973
This study predicts the quality markers(Q-markers) for the cough-relieving and phlegm-expelling effects of Kening Granules based on pharmacodynamics, plasma drug chemistry, network pharmacology, and pharmacokinetics. Strong ammonia solution spray and phenol red secretion assays were employed to evaluate the cough-relieving and phlegm-expelling effects of Kening Granules. Twentysix absorbed prototype components of Kening Granules were identified by ultra high performance liquid chromatography coupled with QExactive Plus quadrupole/Orbitrap high resolution mass spectrometry(UHPLC-Q-Exactive Plus Orbitrap HRMS). Through network pharmacology, 11 potential active components were screened out for the cough-relieving and phlegm-expelling effects of Kening Granules. The 11 components acted on 40 common targets such as IL6, TLR4, and STAT3, which mainly participated in PI3K/Akt, HIF-1, and EGFR signaling pathways. Pharmacokinetic quantitative analysis was performed for 7 prototype components. Three compounds including azelaic acid, caffeic acid, and vanillin were identified as Q-markers for the cough-relieving and phlegm-expelling effects of Kening Granules based on their effectiveness, transmissibility, and measurability. The results of this study are of great significance for clarifying the pharmacological substance basis, optimizing the quality standards, and promoting the clinical application of Kening Granules.
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Cough/blood*
;
Male
;
Humans
;
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Biomarkers/blood*
;
Quality Control
;
Chromatography, High Pressure Liquid
;
Antitussive Agents/chemistry*
2.Mechanism of Syngnathus extract in treating knee osteoarthritis of rats via regulating PI3K/Akt/mTOR signaling pathway.
Quan-Wei ZHENG ; Guo-Wei WANG ; Si-Xian WU ; Tao ZHUO ; Yi HE ; Jian-Hang LIU
China Journal of Chinese Materia Medica 2025;50(9):2442-2449
To investigate the mechanism of action of Syngnathus extract in treating knee osteoarthritis of rats, forty-eight male SD rats were randomly divided into the blank group, model group, positive drug group, as well as low-dose, medium-dose, and high-dose groups of Syngnathus extract. The rat model of knee osteoarthritis was constructed by intra-articular injection of sodium iodoacetate. After successful modeling, celecoxib(18 mg·kg~(-1)·d~(-1)) and Syngnathus extract(0.4, 0.8, and 1.6 g·kg~(-1)·d~(-1)) were given in different groups by gavage intervention for two weeks. Hematoxylin-eosin(HE) staining was used to observe the histopathological changes of cartilage in knee joints, and enzyme-linked immunosorbent assay(ELISA) was used to detect the expression level of inflammatory factors in serum. Real-time fluorescence quantitative PCR, Western blot, and immunohistochemistry were used to detect the levels of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target protein of rapamycin(mTOR) pathway-related mRNA and protein expression. The results showed that, comparied with the blank group, the cartilage surface of the knee joints of rats in the model group was uneven, with disorganized levels and defective cartilage tissue. The serum levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) and the mRNA levels of PI3K, Akt, and mTOR in cartilage tissue, as well as the protein expression levels of phosphorylated PI3K(p-PI3K)/PI3K, phosphorylated Akt(p-Akt)/Akt, phosphorylated mTOR(p-mTOR)/mTOR, and P62 were significantly increased. Beclin1 protein expression was decreased. Comparied with the model group, the number of chondrocytes in the knee joint of rats in each group of Syngnathus extract increased, and the arrangement of chondrocytes was relatively neat. The cartilage layer was restored, and the serum levels of IL-1β, IL-6, and TNF-α, as well as the mRNA expression levels of PI3K, Akt, and mTOR in cartilage tissue were significantly reduced. The protein expression levels of p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR, and P62 were significantly reduced in the rats in the middle-dose and high-dose groups of Syngnathus extract, and the Beclin1 protein expression was significantly increased. The protein expression levels of p-PI3K/PI3K, p-Akt/Akt, and P62 in rats in the low-dose group of Syngnathus extract were significantly reduced. In summary, Syngnathus extract may be used to treat knee osteoarthritis by inhibiting the expression of PI3K/Akt/mTOR signaling pathway, so as to alleviate the inflammatory response in the organism, enhance the autophagy activity of chondrocytes, and reduce the apoptosis of chondrocytes.
Animals
;
TOR Serine-Threonine Kinases/genetics*
;
Male
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Rats
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Humans
3.Mechanism of Hippocampus in treatment of knee osteoarthritis based on network pharmacology, molecular docking, and experimental verification.
Tao ZHUO ; Guo-Wei WANG ; Si-Xian WU ; Quan-Wei ZHENG ; Yi HE ; Jian-Hang LIU
China Journal of Chinese Materia Medica 2025;50(14):4026-4036
This study predicts the potential mechanism of Hippocampus in the treatment of knee osteoarthritis(KOA) through network pharmacology, with preliminary verification using molecular docking and animal experiments. The database was used to screen the active chemical components of Hippocampus and the targets of KOA, and Gene Ontology(GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and molecular docking were performed on the relevant core targets to preliminarily explore the potential targets and mechanisms of Hippocampus in the treatment of KOA. A rat KOA model was constructed by intra-articular injection of sodium iodoacetate, and the rats were intervened with different doses of Hippocampus decoction and celecoxib. The expression of relevant targets was detected through hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), RT-qPCR, and Western blot to further validate the network pharmacology results. A total of 23 drug-like components of the Hippocampus were screened, and 128 common targets with KOA were identified, involving interleukin-17(IL-17) signaling pathway, transcription factor(FoxO) signaling pathway, tumor necrosis factor(TNF) signaling pathway. Molecular docking results showed that the screened core chemical components exhibited good affinity with key targets. HE staining demonstrated that Hippocampus improved the morphology of the cartilage layer. ELISA confirmed that Hippocampus significantly reduced the levels of IL-6 and TNF-α in the serum of KOA rats. Western blot and RT-qPCR analysis showed that Hippocampus significantly reduced the expression of IL-6, TNF-α, matrix metalloproteinase(MMP) 13, IL-17A, nuclear factor κB activator 1(ACT1), tumor necrosis factor receptor-associated factor 6(TRAF6) and nuclear factor κB(NF-κB) in cartilage tissue. The results suggest that Hippocampus can alleviate the degree of joint damage in the KOA rat model induced by sodium iodoacetate. The mechanism of action is related to the inhibition of the IL-17 signaling pathway, reduction of inflammation, and inhibition of extracellular matrix(ECM) degradation.
Animals
;
Molecular Docking Simulation
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Male
;
Osteoarthritis, Knee/metabolism*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Humans
;
Interleukin-17/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Hippocampus/chemistry*
4.Bioinformatics analysis of efferocytosis-related genes in diabetic kidney disease and screening of targeted traditional Chinese medicine.
Yi KANG ; Qian JIN ; Xue-Zhe WANG ; Meng-Qi ZHOU ; Hui-Juan ZHENG ; Dan-Wen LI ; Jie LYU ; Yao-Xian WANG
China Journal of Chinese Materia Medica 2025;50(14):4037-4052
This study employed bioinformatics to screen the feature genes related to efferocytosis in diabetic kidney disease(DKD) and explores traditional Chinese medicine(TCM) regulating these feature genes. The GSE96804 and GSE30528 datasets were integrated as the training set, and the intersection of differentially expressed genes and efferocytosis-related genes(ERGs) was identified as DKD-ERGs. Subsequently, correlation analysis, protein-protein interaction(PPI) network construction, enrichment analysis, and immune infiltration analysis were performed. Consensus clustering was conducted on DKD patients based on the expression levels of DKD-ERGs, and the expression levels, immune infiltration characteristics, and gene set variations between different subtypes were explored. Eight machine learning models were constructed and their prediction performance was evaluated. The best-performing model was evaluated by nomograms, calibration curves, and external datasets, followed by the identification of efferocytosis-related feature genes associated with DKD. Finally, potential TCMs that can regulate these feature genes were predicted. The results showed that the training set contained 640 differentially expressed genes, and after intersecting with ERGs, 12 DKD-ERGs were obtained, which demonstrated mutual regulation and immune modulation effects. Consensus clustering divided DKD into two subtypes, C1 and C2. The support vector machine(SVM) model had the best performance, predicting that growth arrest-specific protein 6(GAS6), S100 calcium-binding protein A9(S100A9), C-X3-C motif chemokine ligand 1(CX3CL1), 5'-nucleotidase(NT5E), and interleukin 33(IL33) were the feature genes of DKD. Potential TCMs with therapeutic effects included Astragali Radix, Trionycis Carapax, Sargassum, Rhei Radix et Rhizoma, Curcumae Radix, and Alismatis Rhizoma, which mainly function to clear heat, replenish deficiency, activate blood, resolve stasis, and promote urination and drain dampness. Molecular docking revealed that the key components of these TCMs, including β-sitosterol, quercetin, and sitosterol, exhibited good binding activity with the five target genes. These results indicated that efferocytosis played a crucial role in the development and progression of DKD. The feature genes closely related to both DKD and efferocytosis, such as GAS6, S100A9, CX3CL1, NT5E, and IL33, were identified. TCMs such as Astragali Radix, Trionycis Carapa, Sargassum, Rhei Radix et Rhizoma, Curcumae Radix, and Alismatis Rhizoma may provide a new therapeutic strategy for DKD by regulating efferocytosis.
Humans
;
Computational Biology
;
Diabetic Nephropathies/physiopathology*
;
Protein Interaction Maps
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal
;
Phagocytosis/genetics*
;
Efferocytosis
5.Study on the mechanism of apoptosis mediated by acid sensitive ion channel 1 through extracellular signal regulation of kinase 5 signaling pathway and mitochondrial disorder pathway.
Xian-Fang LUO ; Zheng-Yue JIN ; Chi ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(3):298-305
OBJECTIVE:
To explore mechanisms of acid-sensing ion channel 1 (ASIC1) mediated lumbar nucleus pulposus cell apoptosis through extracellular-signalregulated protein kinase 5 (ERK5) signaling pathway and mitochondrial dysfunction pathway.
METHODS:
Totally 34 patients with degenerative lumbar disc herniation (LDH) admitted from January 2020 to December 2022 were collected as research objects, including 21 males and 13 females;aged from 29 to 52 years old with an average of (37.43±4.75) years old;22 patients with grade Ⅱ and 12 patients with grade Ⅳ, according to Pfirrmann grading criteria;15 patients with L4,5 and 19 patients with L5S1. The expression of ASIC1 in nucleus pulposus of LDH patients was measured by immunohistochemical staining. Nucleus pulposus cells were cultured by primary culture method, identified by toluidine blue staining and immunohistochemical staining, and the expression of ASIC1 protein was located by immunofluorescence staining. According to the addition of siRNA-ASIC1, ASIC1 overexpression plasmid, and ERK5 inhibitors, the nucleus pulpocyte was divided into three groups, named as SIRNA-silenced group, overexpression group, and inhibitor group, with 3 patients in each group. Cells of each group were collected at 72 h after intervention, expression of ASIC1, ERK5, BCL-xL/BCL-2-associated Death promoter (Bad), B-cell lymphoma-2 associated X (Bax) and B-cell lymphoblast-2 gene (Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR);intracellular calcium ion levels were detected by calcium ion kit, mitochondrial membrane potential was detected by JC-1 kit, and apoptosis was observed by AV-PI kit.
RESULTS:
In LDH patients with grade Ⅳ, nucleus pulposus tissue removed during operation revealed poor elasticity, white color and poor ductility, and immunohistochemical results showed increased ASIC1 expression. There was no significant difference in mRNA relative expression of ASIC1 between siRNA silencing group (0.31±0.03) and inhibitor group (0.39±0.05) (P>0.05). The mRNA relative expression level of ERK5 in siRNA silencing group(0.32±0.05) was significantly higher than that in inhibitor group (0.15±0.04)(P<0.05), which suggested ERK5 was the downstream molecule of ASIC1. The mRNA relative expression levels of apoptosis promoting factor Bad and Bax in siRNA silencing group and inhibitor group were lower than those in overexpression group(P<0.05), the relative expression level of anti-apoptosis factor Bcl-2 mRNA was significantly increased (P<0.05). The calcium content in overexpression group was higher than that in siRNA silencing and inhibitor groups (P<0.05), the normal proportion of mitochondrial membrane potential in overexpression group was lower than that in siRNA silencing and inhibitor group (P<0.05), and the apoptosis rate in overexpression group was higher than that in siRNA silencing and inhibitor group (P<0.05).
CONCLUSION
After the activation of ASIC1 channel protein, calcium ions could enter the cells and act as a second messenger molecule to regulate apoptosis of nucleus pulposus cells by ERK5 signaling pathway and mitochondrial disorder pathway.
Humans
;
Acid Sensing Ion Channels/physiology*
;
Male
;
Female
;
Apoptosis
;
Middle Aged
;
Adult
;
Signal Transduction
;
Mitogen-Activated Protein Kinase 7/physiology*
;
Mitochondrial Diseases/genetics*
;
Nucleus Pulposus/metabolism*
;
Intervertebral Disc Degeneration/metabolism*
;
Mitochondria/metabolism*
;
Intervertebral Disc Displacement/genetics*
6.Clinical characteristics and prognosis of chronic disseminated candidiasis in children with acute leukemia following chemotherapy: a multicenter clinical study.
Xin-Hong JIANG ; Pei-Jun LIU ; Chun-Ping WU ; Kai-Zhi WENG ; Shu-Quan ZHUANG ; Shu-Xian HUANG ; Xiao-Fang WANG ; Yong-Zhi ZHENG
Chinese Journal of Contemporary Pediatrics 2025;27(5):540-547
OBJECTIVES:
To investigate the clinical characteristics and prognosis of chronic disseminated candidiasis (CDC) in children with acute leukemia (AL) following chemotherapy.
METHODS:
A retrospective analysis was conducted on children diagnosed with CDC (including confirmed, clinically diagnosed, and suspected cases) after AL chemotherapy from January 2015 to December 2023 at Fujian Medical University Union Hospital, Zhangzhou Municipal Hospital, and Quanzhou First Hospital Affiliated to Fujian Medical University. Clinical characteristics and prognosis were analyzed.
RESULTS:
The incidence of CDC in children with AL following chemotherapy was 1.92% (32/1 668). Among the children with acute lymphoblastic leukemia, the incidence of CDC in the high-risk group was significantly higher than in the low-risk group (P=0.002). All patients presented with fever unresponsive to antibiotics during the neutropenic period, with 81% (26/32) involving the liver. C-reactive protein (CRP) levels were significantly elevated (≥50 mg/L) in 97% (31/32) of the patients. The efficacy of combined therapy with liposomal amphotericin B and caspofungin or posaconazole for CDC was 66% (19/29), higher than with caspofungin (9%, 2/22) or liposomal amphotericin B (18%, 2/11) monotherapy. The overall cure rate was 72% (23/32). The proportion of patients with CRP ≥50 mg/L and/or a positive β-D-glucan test for more than 2 weeks and breakthrough infections during caspofungin treatment was significantly higher in the treatment failure group compared to the successful treatment group (P<0.05).
CONCLUSIONS
CDC in children with AL after chemotherapy may be associated with prolonged neutropenia due to intensive chemotherapy. Combination antifungal regimens based on liposomal amphotericin B have a higher cure rate, while persistently high CRP levels and positive β-D-glucan tests may indicate poor prognosis.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Infant
;
Male
;
Antifungal Agents/therapeutic use*
;
Candidiasis/diagnosis*
;
Chronic Disease
;
Leukemia/complications*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications*
;
Prognosis
;
Retrospective Studies
7.Genetic profiling and intervention strategies for phenylketonuria in Gansu, China: an analysis of 1 159 cases.
Chuan ZHANG ; Pei ZHANG ; Bing-Bo ZHOU ; Xing WANG ; Lei ZHENG ; Xiu-Jing LI ; Jin-Xian GUO ; Pi-Liang CHEN ; Ling HUI ; Zhen-Qiang DA ; You-Sheng YAN
Chinese Journal of Contemporary Pediatrics 2025;27(7):808-814
OBJECTIVES:
To investigate the molecular epidemiology of children with phenylketonuria (PKU) in Gansu, China, providing foundational data for intervention strategies.
METHODS:
A retrospective analysis was conducted on 1 159 PKU families who attended Gansu Provincial Maternity and Child Care Hospital from January 2012 to December 2024. Sanger sequencing, multiplex ligation-dependent probe amplification, whole exome sequencing, and deep intronic variant analysis were used to analyze the PAH gene.
RESULTS:
For the 1 159 children with PKU, 2 295 variants were identified in 2 318 alleles, resulting in a detection rate of 99.01%. The detection rates were 100% (914/914) in 457 classic PKU families, 99.45% (907/912) in 456 mild PKU families, and 96.34% (474/492) in 246 mild hyperphenylalaninemia families. The 2 295 variants detected comprised 208 distinct mutation types, among which c.728G>A (14.95%, 343/2 295) had the highest frequency, followed by c.611A>G (4.88%, 112/2 295) and c.721C>T (4.79%, 110/2 295). The cumulative frequency of the top 23 hotspot variants reached 70.28% (1 613/2 295), and most variant alleles were detected in exon 7 (29.19%, 670/2 295).
CONCLUSIONS
Deep intronic variant analysis of the PAH gene can improve the genetic diagnostic rate of PKU. The development of targeted detection kits for PAH hotspot variants may enable precision screening programs and enhance preventive strategies for PKU.
Humans
;
Phenylketonurias/epidemiology*
;
Female
;
Male
;
Retrospective Studies
;
Phenylalanine Hydroxylase/genetics*
;
Mutation
;
Child, Preschool
;
China/epidemiology*
;
Child
;
Infant
8.Application of Fine-Needle Aspiration in the Diagnosis of Classic Hodgkin Lymphoma and Its Clinical Pathological Analysis.
Lan CHEN ; Zhou-Ying LIU ; Zheng-Xian CHEN ; Jin-Song ZHANG
Journal of Experimental Hematology 2025;33(4):1047-1050
OBJECTIVE:
To analyze the cytologic characteristics fine-needle aspiration using histology as the gold standard and to evaluate its diagnostic application in classic Hodgkin lymphoma.
METHODS:
A retrospective analysis was conducted on 17 patients who underwent both coarse-needle aspiration and fine-needle aspiration and were histologically confirmed with classic Hodgkin lymphoma(CHL) at our hospital from December 2012 to December 2023. Clinical information of these patients was collected, and the smear morphology, immunocytochemistry and corresponding biopsies were reviewed.
RESULTS:
Among the 17 cases of CHL, there were 5 cases of mixed cellularity, 10 cases of nodular sclerosis and 2 cases were unsubtyped. Fifteen cases were correctly diagnosed by fine-needle aspiration, with an accuracy rate of 88.2%. The other two cases were misdiagnosed as non-Hodgkin lymphoma. Morphologically single dispersed mononuclear Hodgkin cells and multinucleated Reed-Sternberg cells were observed in a heterogenous background of lymphocytes in cytology smears, and these cells were positive for CD30 immunocytochemistry.
CONCLUSION
Fine needle aspiration is less invasive and quicker, and the cell morphology is better preserved as compared to histological biopsy. It is easier to recognize pathognomonic Hodgkin or Reed-Sternberg cells and it is helpful for the rapid diagnosis and clinical management of CHL.
Humans
;
Hodgkin Disease/pathology*
;
Biopsy, Fine-Needle
;
Retrospective Studies
;
Female
;
Immunohistochemistry
;
Male
9.Evolution of temporomandibular joint reconstruction: from autologous tissue transplantation to alloplastic joint replacement.
Hanghang LIU ; Liwei HUANG ; Shibo LIU ; Linyi LIU ; Bolun LI ; Zizhuo ZHENG ; Yao LIU ; Xian LIU ; En LUO
International Journal of Oral Science 2025;17(1):17-17
The reconstruction of the temporomandibular joint presents a multifaceted clinical challenge in the realm of head and neck surgery, underscored by its relatively infrequent occurrence and the lack of comprehensive clinical guidelines. This review aims to elucidate the available approaches for TMJ reconstruction, with a particular emphasis on recent groundbreaking advancements. The current spectrum of TMJ reconstruction integrates diverse surgical techniques, such as costochondral grafting, coronoid process grafting, revascularized fibula transfer, transport distraction osteogenesis, and alloplastic TMJ replacement. Despite the available options, a singular, universally accepted 'gold standard' for reconstructive techniques or materials remains elusive in this field. Our review comprehensively summarizes the current available methods of TMJ reconstruction, focusing on both autologous and alloplastic prostheses. It delves into the differences of each surgical technique and outlines the implications of recent technological advances, such as 3D printing, which hold the promise of enhancing surgical precision and patient outcomes. This evolutionary progress aims not only to improve the immediate results of reconstruction but also to ensure the long-term health and functionality of the TMJ, thereby improving the quality of life for patients with end-stage TMJ disorders.
Humans
;
Temporomandibular Joint/surgery*
;
Temporomandibular Joint Disorders/surgery*
;
Transplantation, Autologous
;
Arthroplasty, Replacement/methods*
;
Joint Prosthesis
;
Plastic Surgery Procedures/methods*
10.Metabolic reprogramming by glutathione S-transferase enhances environmental adaptation of Streptococcus mutans.
Haoyue ZHENG ; Xian PENG ; Jing ZOU
West China Journal of Stomatology 2025;43(5):728-735
OBJECTIVES:
This study aims to investigate the impact of glutathione S-transferase (GST) on the environmental adaptability of Streptococcus mutans (S. mutans).
METHODS:
A GST knockout strain ΔgsT was constructed. Transcriptomic sequencing was performed to analyze the gene expression differences between the wild-type S. mutans UA159 and its GST knockout strain ΔgsT. Comprehensive functional assessments, including acid tolerance assays, hydrogen peroxide challenge assays, nutrient limitation growth assays, and fluorescence in situ hybridization, were conducted to evaluate the acid tolerance, antioxidant stress resistance, growth kinetics, and interspecies competitive ability of ΔgsT within plaque biofilms.
RESULTS:
Compared with the wild-type S. mutans, 198 genes in ΔgsT were significantly differentially expressed and enriched in pathways related to metabolism, stress response, and energy homeostasis. The survival rate of ΔgsT in acid tolerance assays was markedly reduced (P<0.01). After 15 min of hydrogen peroxide challenge, the survival rate of ΔgsT decreased to 38.12% (wild type, 71.75%). Under nutrient-limiting conditions, ΔgsT exhibited a significantly lower final OD600 value than the wild-type strain (P<0.05). In the biofilm competition assays, the proportion of S. mutans ΔgsT in the mixed biofilm (8.50%) was significantly lower than that of the wild type (16.89%) (P<0.05).
CONCLUSIONS
GST enhances the acid resistance, oxidative stress tolerance, and nutrient adaptation of S. mutans by regulating metabolism-related and stress response-related genes.
Streptococcus mutans/enzymology*
;
Biofilms
;
Glutathione Transferase/physiology*
;
Adaptation, Physiological
;
Hydrogen Peroxide/pharmacology*
;
Gene Expression Regulation, Bacterial
;
Oxidative Stress
;
Metabolic Reprogramming

Result Analysis
Print
Save
E-mail