1.Risk factors for bronchopulmonary dysplasia in twin preterm infants:a multicenter study
Yu-Wei FAN ; Yi-Jia ZHANG ; He-Mei WEN ; Hong YAN ; Wei SHEN ; Yue-Qin DING ; Yun-Feng LONG ; Zhi-Gang ZHANG ; Gui-Fang LI ; Hong JIANG ; Hong-Ping RAO ; Jian-Wu QIU ; Xian WEI ; Ya-Yu ZHANG ; Ji-Bin ZENG ; Chang-Liang ZHAO ; Wei-Peng XU ; Fan WANG ; Li YUAN ; Xiu-Fang YANG ; Wei LI ; Ni-Yang LIN ; Qian CHEN ; Chang-Shun XIA ; Xin-Qi ZHONG ; Qi-Liang CUI
Chinese Journal of Contemporary Pediatrics 2024;26(6):611-618
Objective To investigate the risk factors for bronchopulmonary dysplasia(BPD)in twin preterm infants with a gestational age of<34 weeks,and to provide a basis for early identification of BPD in twin preterm infants in clinical practice.Methods A retrospective analysis was performed for the twin preterm infants with a gestational age of<34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020.According to their conditions,they were divided into group A(both twins had BPD),group B(only one twin had BPD),and group C(neither twin had BPD).The risk factors for BPD in twin preterm infants were analyzed.Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins.Results A total of 904 pairs of twins with a gestational age of<34 weeks were included in this study.The multivariate logistic regression analysis showed that compared with group C,birth weight discordance of>25%between the twins was an independent risk factor for BPD in one of the twins(OR=3.370,95%CI:1.500-7.568,P<0.05),and high gestational age at birth was a protective factor against BPD(P<0.05).The conditional logistic regression analysis of group B showed that small-for-gestational-age(SGA)birth was an independent risk factor for BPD in individual twins(OR=5.017,95%CI:1.040-24.190,P<0.05).Conclusions The development of BPD in twin preterm infants is associated with gestational age,birth weight discordance between the twins,and SGA birth.
2.Liuwei Buqi Formula delays progression of chronic obstructive pulmonary disease in rats by regulating the NLRP3/caspase-1/GSDMD pyroptosis pathway
Li MEI ; Lu ZHANG ; Di WU ; Huanzhang DING ; Xinru WANG ; Xian ZHANG ; Yuhang WEI ; Zegeng LI ; Jiabing TONG
Journal of Southern Medical University 2024;44(11):2156-2162
Objective To explore the therapeutic mechanism of Liuwei Buqi(LWBQ)Formula for chronic obstructive pulmonary disease(COPD)in rat models.Methods SD rat models of COPD established by cigarette smoking combined with intratracheal lipopolysaccharide(LPS)instillation and hormone injection were treated with LWBQ Formula by gavage with or without intraperitoneal injection of MCC950 for 3 weeks,starting at the 5th week of modeling.After the treatments,the rats were examined for lung pathologies,lung function,total cell count and white blood cell count in bronchoalveolar lavage fluid(BALF),and serum levels of IL-6,TNF-α,IL-18 and NO.The mRNA expressions of NLRP3,ASC,caspase-1,GSDMD-N,IL-1β,and IL-18 in the lung tissue were detected with qRT-PCR.Results Compared with the normal control rats,the COPD rat models had severe lung pathologies and showed significantly decreased lung function,increased total cell and leukocyte subset counts in BALF,and increased serum levels of IL-6,TNF-α,IL-18 and NO and mRNA expressions of pyroptosis-related proteins in the lung tissue.Treatment of the rat models with LWBQ Formula significantly improved lung pathology and lung function,reduced total cell and leukocyte counts in BALF,and decreased serum levels of the inflammatory factors and expressions of pyroptosis-related proteins in the lung tissue.The combined treatment with MCC950 further improved lung pathology and function in spite of a significant difference,but BALF cell counts,serum inflammatory factor levels and pulmonary expressions of pyroptosis-related proteins were all significantly reduced following the treatment.Conclusion LWBQ Formula can delay the progression of COPD in rats possibly by inhibiting lung tissue pyroptosis via regulating the NLRP3/caspase-1/GSDMD pathway to reduce inflammatory response and lung damage.
3.Liuwei Buqi Formula delays progression of chronic obstructive pulmonary disease in rats by regulating the NLRP3/caspase-1/GSDMD pyroptosis pathway
Li MEI ; Lu ZHANG ; Di WU ; Huanzhang DING ; Xinru WANG ; Xian ZHANG ; Yuhang WEI ; Zegeng LI ; Jiabing TONG
Journal of Southern Medical University 2024;44(11):2156-2162
Objective To explore the therapeutic mechanism of Liuwei Buqi(LWBQ)Formula for chronic obstructive pulmonary disease(COPD)in rat models.Methods SD rat models of COPD established by cigarette smoking combined with intratracheal lipopolysaccharide(LPS)instillation and hormone injection were treated with LWBQ Formula by gavage with or without intraperitoneal injection of MCC950 for 3 weeks,starting at the 5th week of modeling.After the treatments,the rats were examined for lung pathologies,lung function,total cell count and white blood cell count in bronchoalveolar lavage fluid(BALF),and serum levels of IL-6,TNF-α,IL-18 and NO.The mRNA expressions of NLRP3,ASC,caspase-1,GSDMD-N,IL-1β,and IL-18 in the lung tissue were detected with qRT-PCR.Results Compared with the normal control rats,the COPD rat models had severe lung pathologies and showed significantly decreased lung function,increased total cell and leukocyte subset counts in BALF,and increased serum levels of IL-6,TNF-α,IL-18 and NO and mRNA expressions of pyroptosis-related proteins in the lung tissue.Treatment of the rat models with LWBQ Formula significantly improved lung pathology and lung function,reduced total cell and leukocyte counts in BALF,and decreased serum levels of the inflammatory factors and expressions of pyroptosis-related proteins in the lung tissue.The combined treatment with MCC950 further improved lung pathology and function in spite of a significant difference,but BALF cell counts,serum inflammatory factor levels and pulmonary expressions of pyroptosis-related proteins were all significantly reduced following the treatment.Conclusion LWBQ Formula can delay the progression of COPD in rats possibly by inhibiting lung tissue pyroptosis via regulating the NLRP3/caspase-1/GSDMD pathway to reduce inflammatory response and lung damage.
4.Treatment and outcome of a young female patient with severe aortic stenosis and complex coronary disease associated with familial hypercholesterolemia: a case report.
Kai Min WU ; Bin WANG ; Guo Ming ZHANG ; Fei LIU ; Li Cheng DING ; Guang Feng SUN ; Wei Mei OU ; Zhi Xian LIU ; Cheng Min HUANG ; Yan WANG
Chinese Journal of Cardiology 2023;51(3):310-313
5.Protective effect and mechanism of Maiwei Yangfei Decoction on pulmonary fibrosis mice based on Nrf2 regulation of oxidative stress.
Yun WEI ; Jing WANG ; Di HAN ; Tong-Xing HUANG ; Le BAI ; Li-Wei CHEN ; Yong XU ; Xian-Mei ZHOU
China Journal of Chinese Materia Medica 2023;48(24):6682-6692
This study explored the effect and mechanism of Maiwei Yangfei Decoction(MWYF) on pulmonary fibrosis(PF) mice. MWYF was prepared, and its main components were detected by ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-MS/MS). Male C57BL/6J mice were randomly divided into a control group, a model group, a pirfenidone(PFD) group, and low-, medium-, and high-dose MWYF groups, with 10 mice in each group. The PF model was induced in mice except for those in the control group by intratracheal instillation of bleomycin(BLM), and model mice were treated with saline or MWYF or PFD by gavage the next day. The water consumption, food intake, hair, and activity of mice were observed daily. The pathological changes in lung tissues were observed by hematoxylin-eosin(HE) staining, Masson staining, and CT scanning. The level of hydroxyproline(HYP) in lung tissues was detected by alkaline hydrolysis. Immunohistochemistry was used to observe the expression of collagen type Ⅲ(COL3) and fibronectin. The mRNA expression levels of α-smooth muscle actin(α-SMA), type Ⅰ collagen α1(COL1α1), COL3, and vimentin were detected by reverse transcription real-time fluorescence quantitative polymerase chain reaction(RT-qPCR). Superoxide dismutase(SOD) and malondialdehyde(MDA) kits were used to detect oxidative stress indicators in lung tissues and serum. The nuclear translocation of nuclear factor E2-related factor 2(Nrf2) protein was detected by immunofluorescence. The protein and mRNA expression levels of Nrf2, catalase(CAT), and heme oxygenase 1(HO-1) in lung tissues were detected by Western blot and RT-qPCR. Twelve chemical components were detected by UPLC-MS/MS. Animal experiments showed that MWYF could improve alveolar inflammation, collagen deposition, and fibrosis in PF mice, increase body weight of mice, and down-regulate the expression of fibrosis indexes such as HYP, α-SMA, COL1α1, COL3, fibronectin, and vimentin in lung tissues. In addition, MWYF could potentiate the activity of SOD in lung tissues and serum of PF mice, up-regulate the expression level of Nrf2, and promote its transfer to the nucleus, up-regulate the levels of downstream antioxidant target genes CAT and HO-1, and then reduce the accumulation of lipid metabolite MDA. In summary, MWYF can significantly improve the pathological damage and fibrosis of lung tissues in PF mice, and its mechanism may be related to the activation of the Nrf2 pathway to regulate oxidative stress.
Mice
;
Male
;
Animals
;
Pulmonary Fibrosis/chemically induced*
;
NF-E2-Related Factor 2/metabolism*
;
Fibronectins/metabolism*
;
Vimentin/metabolism*
;
Chromatography, Liquid
;
Mice, Inbred C57BL
;
Tandem Mass Spectrometry
;
Oxidative Stress
;
Superoxide Dismutase/metabolism*
;
RNA, Messenger/metabolism*
6. Study of 3-bromopyruvate on regulating imbalance of apoptosis/autophagy in fibroblast-like synoviocytes through AMPK/mTOR pathway
Ya-Ting WANG ; Hao XIAN ; Xiu-Rong BAO ; Han-Meng ZHANG ; Yi-Ning SONG ; Fang WEI ; Ying-Mei WEI ; Ying WANG
Chinese Pharmacological Bulletin 2023;39(8):1463-1469
Aim To investigate the regulatory effects of 3-bromopyruvate (3-BrPA) on apoptosis and autophagy of fibroblast-like synoviocytes (FLS) in rats based on AMPK/mTOR signaling pathway and the underlying mechanism. Methods FLS of rats in vitro were cultured and induced by tumor necrosis factor-α (TNF-α) to construct a model of rheumatoid arthritis (R A). MTT assay was used to explore the optimal concentration of TNF-α and 3 -BrPA for induction and treatment of FLS. The effects of 3-BrPA on the migration and invasion of FLS were detected by Wound healing assay and Transwell assay. The apoptosis of FLS was tested by flow cytometry and mitochondrial membrane potential assay kit (JC-1). Moreover, FLS autophagic flux was detected by mCherry-EGFP-LC3B-overexpressed plasmids, and the expression of apoptosis/autophagy-related proteins as well as AMPK/mTOR pathway-related proteins were detected by Western blot. Results 3-BrPA (15 μmol • L) significantly inhibited the proliferation, migration, and invasion of FLS stimulated by TNF-a (25 μg • L
7. Mechanism study of Dangshen Pingfei Huoxue decoction in treatment of pulmonary fibrosis based on network pharmacology and molecular docking
Wei-Zhou ZHANG ; Yong XU ; Di HAN ; Dong-Wei ZHU ; Ting-Yu PAN ; Xian-Mei ZHOU
Chinese Pharmacological Bulletin 2023;39(6):1165-1173
Aim To explore the potential mechanism of Dangshen Pingfei Huoxue decoction (DPHD) in the treatment of pulmonary fibrosis. Methods The common targets of DPHD and pulmonary fibrosis were obtained. Cytoscape software was used to construct " disease-drug-ingredients-targets " network diagram, and the common targets were imported into the STRING database for protein-protein interaction (PPI) analysis to screen out the core targets. In order to screen out key signaling pathways, the core genes were inputted into the DAVID platform for gene ontology (GO) and kyoto encyclopedia of genes genomes (KEGG) enrichment analysis. Then the molecular docking technology was used to verify the molecular docking between the core components and the key proteins in the signaling pathway. Finally, the molecular docking technology was used to verify the results of network pharmacology. Results A total of 176 active ingredients were obtained, and the top 5 was quercetin, kaempferol, luteolin, naringenin and p-sitosterol, respectively. A total of 116 common targets were obtained. A total of 21 core targets were finally obtained by PPI screening, and the top 5 was AKT1, CCND1, CASP3, MYC and IL1B, respectively. The results of GO enrichment analysis showed that DPHD was mainly involved biological processes of oxidative stress, proliferation and differentiation, transcriptional regulation, drug response and inflammatory response. The results of KEGG enrichment analysis indicated that the mainly signaling pathways included PI3K/Akt, MAPK, cellular senescence, AMPK, and TGF-beta. Molecular docking results showed that the binding energies of the top 5 active components of DPHD and the top 5 core targets were all less than-6.0 kcal • mo
8. Treatment advice of small molecule antiviral drugs for elderly COVID-19
Min PAN ; Shuang CHANG ; Xiao-Xia FENG ; Guang-He FEI ; Jia-Bin LI ; Hua WANG ; Du-Juan XU ; Chang-Hui WANG ; Yan SUN ; Xiao-Yun FAN ; Tian-Jing ZHANG ; Wei WEI ; Ling-Ling ZHANG ; Jim LI ; Fei-Hu CHEN ; Xiao-Ming MENG ; Hong-Mei ZHAO ; Min DAI ; Yi XIANG ; Meng-Shu CAO ; Xiao-Yang CHEN ; Xian-Wei YE ; Xiao-Wen HU ; Ling JIANG ; Yong-Zhong WANG ; Hao LIU ; Hai-Tang XIE ; Ping FANG ; Zhen-Dong QIAN ; Chao TANG ; Gang YANG ; Xiao-Bao TENG ; Chao-Xia QIAN ; Guo-Zheng DING
Chinese Pharmacological Bulletin 2023;39(3):425-430
COVID-19 has been prevalent for three years. The virulence of SARS-CoV-2 is weaken as it mutates continuously. However, elderly patients, especially those with underlying diseases, are still at high risk of developing severe infections. With the continuous study of the molecular structure and pathogenic mechanism of SARS-CoV-2, antiviral drugs for COVID-19 have been successively marketed, and these anti-SARS-CoV-2 drugs can effectively reduce the severe rate and mortality of elderly patients. This article reviews the mechanism, clinical medication regimens, drug interactions and adverse reactions of five small molecule antiviral drugs currently approved for marketing in China, so as to provide advice for the clinical rational use of anti-SARS-CoV-2 in the elderly.
9.Role and mechanism of platelet-derived growth factor BB in thrombocytosis in Kawasaki disease.
Xi-Wei SHEN ; Zhi-Yuan TANG ; Xian-Juan SHEN ; Jian-Mei ZHAO
Chinese Journal of Contemporary Pediatrics 2023;25(6):579-586
OBJECTIVES:
To study the role and mechanism of platelet-derived growth factor BB (PDGF-BB) on platelet production in Kawasaki disease (KD) mice and human megakaryocytic Dami cells through in vitro and invivo experiments.
METHODS:
ELISA was used to measure the expression of PDGF in the serum of 40 children with KD and 40 healthy children. C57BL/6 mice were used to establish a model of KD and were then randomly divided into a normal group, a KD group, and an imatinib group (30 mice in each group). Routine blood test was performed for each group, and the expression of PDGF-BB, megakaryocyte colony forming unit (CFU-MK), and the megakaryocyte marker CD41 were measured. CCK-8, flow cytometry, quantitative real-time PCR, and Western blot were used to analyze the role and mechanism of PDGF-BB in platelet production in Dami cells.
RESULTS:
PDGF-BB was highly expressed in the serum of KD children (P<0.001). The KD group had a higher expression level of PDGF-BB in serum (P<0.05) and significant increases in the expression of CFU-MK and CD41 (P<0.001), and the imatinib group had significant reductions in the expression of CFU-MK and CD41 (P<0.001). In vitro experiments showed that PDGF-BB promoted Dami cell proliferation, platelet production, mRNA expression of PDGFR-β, and protein expression of p-Akt (P<0.05). Compared with the PDGF-BB group, the combination group (PDGF-BB 25 ng/mL + imatinib 20 μmol/L) had significantly lower levels of platelet production, mRNA expression of PDGFR-β, and protein expression of p-Akt (P<0.05).
CONCLUSIONS
PDGF-BB may promote megakaryocyte proliferation, differentiation, and platelet production by binding to PDGFR-β and activating the PI3K/Akt pathway, and the PDGFR-β inhibitor imatinib can reduce platelet production, which provides a new strategy for the treatment of thrombocytosis in KD.
Child
;
Humans
;
Animals
;
Mice
;
Mice, Inbred C57BL
;
Becaplermin
;
Imatinib Mesylate/therapeutic use*
;
Mucocutaneous Lymph Node Syndrome/drug therapy*
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Thrombocytosis/etiology*
;
RNA, Messenger
10.Establishment and application of drug use evaluation criteria for aminocaproic acid injection
Ai-Zhen WEI ; Mei-Zhang WANG ; Liang ZHANG ; Xian-Bo ZHANG ; Jin-Hua ZHANG
Chinese Journal of Pharmacoepidemiology 2023;32(12):1331-1337
Objective To establish drug use evaluation(DUE)criteria for aminocaproic acid injection,and to evaluate and analyse clinical use of aminocaproic acid injection.Methods Based on the aminocaproic acid injection drug label,DUE of aminocaproic acid injection from three aspects(indications,medications and medication results)were established with reference to relevant literature.A retrospective survey was conducted to evaluate the rationality of medication for inpatients who used aminocaproic acid injection from July 1,2021 to June 30,2022 in Fuding Hospital of Fujian University of Traditional Chinese Medicine.Results A total of 143 midical records were included.73 cases fully met the DUE criteria,70 cases did not fully meet the DUE criteria,and the unreasonable rate was 48.95%.The most common types of irrational using of aminocaproic acid injection were inappropriate timing of perioperative prevention of medication(26.57%),overcourse in perioperative prevention of medication(23.08%),and contraindications(7.69%).Conclusions The aminocaproic acid injection DUE standard established is scientific,practical,the irrational rate of aminocaproic acid injection use is relatively high in this hospital,and the management of rational use of aminocaproic acid injection needs to be strengthened.

Result Analysis
Print
Save
E-mail