1.Stress analysis of computer aided design/computer aided manufacture post-core materials with different elastic moduli
Liangwei XU ; Xitian TIAN ; Lin CHEN ; Hongyan GAO ; Xian ZHU ; Guican YANG ; Yinghao CHEN
Chinese Journal of Tissue Engineering Research 2025;29(10):2061-2066
BACKGROUND:Post and core restoration is a common choice for tooth defects,but the repair effects of various post and core materials are different. OBJECTIVE:To evaluate the stress distribution at the post and core,tooth root,and bonding agent site of post and core models made of different elastic modulus post and core materials using finite element method. METHODS:A three-dimensional root canal treated maxillary central incisor model was built using three-dimensional modeling software,which was restored with a full ceramic crown.The post and core materials in the restoration used nanoceramic resin(elastic modulus=12.8 GPa),composite resin(elastic modulus=16 GPa),hybrid ceramic(elastic modulus=34.7 GPa),glass ceramic(elastic modulus=95 GPa),titanium alloy(elastic modulus=112 GPa),and zirconia(elastic modulus=209.3 GPa).The model was fixed in cortical bone.A 100 N concentrated force of 45° from the long axis of the tooth was applied to 1/3 of the crown and tongue side of the central incisor.The stress distribution of the post and core,dentin,and tooth-root bonding agent in the model was repaired by the maximum principal stress criterion. RESULTS AND CONCLUSION:(1)When the post and core materials with higher elastic modulus was used,the post-core stress in the repair model was more concentrated.When the elastic modulus of the post and core materials(nanoceramic resin and composite resin)was close to dentin,the stress distribution of the post and core was more uniform.The stress distribution of dentin in all restoration models was similar regardless of post and core materials.When the post and core with higher elastic modulus was used,more stress concentration was shown at the post and root bonding agent in the repair model.(2)The maximum stress values at the post and core,tooth root,and the bonding agent site of post and tooth root in the nanoceramic resin model were 31.00,33.21,and 0.51 MPa,respectively.The maximum stress values at the post and core,tooth root,and the bonding agent between the post and tooth root in the composite resin model were 36.84,33.14,and 0.59 MPa,respectively.In the mixed ceramic model,the maximum stress values at the post and core,tooth root,and the bonding agent between the post and tooth root were 64.05,32.83,and 1.00 MPa,respectively.In the glass ceramic model,the maximum stress values at the post and core,tooth root,and the bonding agent between the post and tooth root were 112.30,32.69,and 1.73 MPa,respectively.In the titanium alloy model,the maximum stress values of the post and core,tooth root,and the bonding agent between the post and tooth root were 120.00,32.17,and 1.86 MPa,respectively.In the zirconia model,the maximum stress values of the post and core,tooth root,and the bonding agent between the post and tooth root were 148.80,31.85,and 2.28 MPa,respectively.(3)The higher the elastic modulus of the post and core material,the higher the maximum stress at the post and core during restoration.The elastic modulus of the post and core material had no significant effect on the maximum stress of the dental bonding agent and dentin.
2.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
3.Analysis of the effect of dosimeter wearing position on effective dose estimation among interventional radiology workers
Xuanrong ZHANG ; Wen GUO ; Xian XUE ; Pin GAO ; Kaiyi WANG ; Xuan ZHANG ; Yanqiu DING ; Xiao LUO ; Wenfang MENG ; Jun CHAO
Chinese Journal of Radiological Health 2025;34(5):687-694
Objective To evaluate the influence of the wearing position of dosimeters outside lead aprons on effective dose estimation for interventional radiology workers, analyze the differences between single and double dosimeter methods in effective dose estimation, and provide a reference for the personal dose monitoring of interventional radiology workers. Methods This study employed a combined approach of on-site monitoring and Monte Carlo simulation to evaluate the impact of the wearing position of dosimeters outside lead aprons on effective dose estimation, as well as the differences between effective doses measured using single and double dosimeters. Interventional radiology workers wore dosimeters at three positions: the neck outside the lead collar, the left chest outside the lead apron, and inside the lead apron. Effective doses were estimated using the single and double dosimeter methods specified in GBZ 128-2019 Specifications for individual monitoring of occupational external exposure, and the impact of different wearing positions on the estimation results was compared. Geant4 Monte Carlo simulations were used to model dose distributions at the neck outside the lead collar and at the left chest outside the lead apron for operators performing cardiovascular interventions under tube voltages of 70, 80, 90, and 100 kVp and exposure angles of posteroanterior (PA), anteroposterior (AP), and left anterior oblique 45° (LAO45°) positions. The study assessed the impact of dosimeter wearing position on effective dose estimation. Results Monte Carlo simulations demonstrated that neck doses consistently exceeded left chest doses across different tube voltages and exposure angles, with neck-to-chest dose ratios of 0.80-0.90. Under identical tube voltage conditions, AP showed the highest doses, followed by LAO45°, and PA demonstrated the lowest doses. The single and double dosimeter methods exhibited consistent patterns in effective dose estimation. Single dosimeter method generally yielded higher effective doses with relative deviations of 9.9% to 83%, though these deviations decreased under high tube voltages. Field monitoring data indicated that most interventional radiology workers maintained relative deviations between single and double dosimeter calculations below 6%, with neck-to-chest dose ratios of 0.95-1.1. The estimation patterns remained consistent across both methods, though single dosimeter method showed slightly higher results. Conclusion Under PA, AP, or LAO45°, the doses at the neck consistently exceeded those at the left chest. Therefore, when wearing lead protective equipment, the dosimeter should be properly positioned at the neck outside the lead collar to accurately reflect the radiation doses of surgeons. Some interventional radiology workers improperly positioned the dosimeter (intended at the neck outside the lead collar) at the left chest outside the lead apron, and this may result in an underestimation of the effective dose.
4.Proteomics-based Investigation of Therapeutic Effect and Mechanism of Verbenalin on Lung Injury in Mice Infected with Human Coronavirus-229E
Qiyue SUN ; Shanshan GUO ; Shuangrong GAO ; Lei BAO ; Zihan GENG ; Shuran LI ; Ronghua ZHAO ; Jingsheng ZHANG ; Xian LIU ; Rui XIE ; Xiaolan CUI ; Jing SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):69-78
ObjectiveTo evaluate the pharmacological effects of verbenalin on both in vitro and in vivo infection models of human coronavirus 229E (HCoV-229E) and to preliminarily explore the antiviral mechanism of verbenalin through proteomic analysis. MethodsIn vitro, the cell counting kit-8 (CCK-8) for cell proliferation and viability assessment was used to establish a model of HCoV-229E-induced injury in human lung adenocarcinoma cells(A549). A549 cells were divided into five groups: normal group, model group, and three verbenalin treatment groups (125, 62.5, and 31.25 μmol·L-1). The cell protective activity of verbenalin was evaluated through cell viability assay and immunofluorescence staining. In vivo, 30 BALB/c mice were randomly divided into normal group, model group, chloroquine group, and high-dose, low-dose verbenalin groups (40 and 20 mg·kg-1), with six mice per group. An HCoV-229E-induced mouse lung injury model was established to evaluate the therapeutic effects of verbenalin. Lung injury was assessed by detecting the lung index and lung inhibition rate. The severity of pulmonary inflammation cytokines was measured by enzyme-linked immunosorbent assay (ELISA), while the lung morphology and structure were analyzed by micro-computed tomography (Micro-CT). Hematoxylin and eosin (HE) staining was used to assess histopathological changes in lung tissue. Additionally, four-dimensional data-independent acquisition (4D-DIA) proteomics was employed to preliminarily explore the potential mechanisms of verbenalin in treating HCoV-229E-induced lung injury in mice, through differential protein expression screening, functional annotation, enrichment analysis, and protein-protein interaction network analysis. ResultsThe A549 cells were infected with HCoV-229E at the original viral titer for 36 hours to establish an in vitro infection model. The maximum non-toxic concentration of verbenalin was 125 μmol·L-1, and the half-maximal cytotoxic concentration (CC50) was 288.8 μmol·L-1. Compared with the normal group, the model group showed a significant decrease in cell viability (P<0.01), a significant increase in the proportion of dead cells (P<0.01), mitochondrial damage, and a significant reduction in mitochondrial membrane potential (P<0.01). After treatment with different concentrations of verbenalin (125, 62.5, and 31.25 μmol·L-1), cell viability was significantly increased (P<0.01), and the proportion of dead cells was reduced (P<0.01), with mitochondrial membrane potential restored (P<0.01). In vivo experiments further confirmed the therapeutic effect of verbenalin on HCoV-229E-infected mice. Compared to the normal group, the model group showed a significant increase in the lung index (P<0.01), severe lung tissue injury, lung volume enlargement, and a significant increase in the expression of inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) (P<0.01). In contrast, in the verbenalin treatment groups, these pathological changes were significantly improved, with a reduction in the lung index (P<0.01), alleviation of lung tissue injury, reduced lung volume enlargement, and a significant decrease in inflammatory cytokine expression (P<0.01). Proteomics analysis revealed that, compared to the normal group, the model group showed enrichment in several antiviral immune-related signaling pathways, including the nuclear factor-κB (NF-κB) signaling pathway (P<0.05). Compared to the model group, the verbenalin treatment group showed enrichment in several signaling pathways related to inflammatory response and autophagy (P<0.05), suggesting that verbenalin may exert its antiviral and anti-inflammatory effects by regulating these pathways. ConclusionVerbenalin demonstrates significant therapeutic effects in both in vitro and in vivo HCoV-229E infection models, with its mechanism likely related to the NOD-like receptor protein 3 (NLRP3) inflammasome pathway and mitochondrial autophagy.
5.Space magnetic environment and circadian rhythm.
Bing-Xin GAO ; Cao WANG ; Rui-Xian JIANG ; Wei-Ming TIAN
Acta Physiologica Sinica 2025;77(4):721-730
In recent years, China's manned space program has advanced rapidly, with deep space exploration missions such as manned lunar landing steadily progressing, leading to a significant extension of astronauts' duration in outer space. In this context, the impact of the space magnetic field environment on astronaut health has become increasingly conspicuous. Characterized by its complexity, the spatial magnetic field indirectly regulates the circadian rhythm system by interfering with mitochondrial functions, such as electron transport chain activity, ATP synthesis efficiency, and reactive oxygen species (ROS) balance. This disruption can lead to circadian misalignment, sleep disorders, metabolic dysregulation, and other issues, severely compromising astronauts' physical and mental well-being, as well as mission performance. Currently, researchers have carried out extensive investigations into the influence of the space magnetic environment on circadian rhythms. Nevertheless, due to disparities in magnetic field parameters, exposure durations, and the model organisms employed in experiments, the results have been inconsistent. This review systematically elaborates on ground-based simulation technologies for spatial magnetic field environments and their applications, summarizes the effects of magnetic fields with varying intensities and types on core circadian rhythm biomarkers in model organisms and humans, and explores the underlying molecular and physiological mechanisms of magnetic field-induced circadian rhythm perturbation. This work aims to deepen the understanding of the mechanisms of the space magnetic environment on biological rhythms, and establish a scientific basis for formulating adaptive protective strategies centered on circadian regulation for astronauts, thereby ensuring the successful implementation of long-term deep-space missions.
Circadian Rhythm/physiology*
;
Humans
;
Magnetic Fields/adverse effects*
;
Space Flight
;
Animals
;
Extraterrestrial Environment
6.Therapeutic effect of Ziziphi Spinosae Semen extracts on chronic unpredictable mild stress-induced depression and insomnia-like behavior in mice.
Hong-Bo CHENG ; Xian LIU ; Hui-Ying SHANG ; Rong GAO ; Wan-Yun DANG ; Ye-Hui GAO ; Cheng-Rong XIAO ; Yue GAO ; Zeng-Chun MA
China Journal of Chinese Materia Medica 2025;50(7):1817-1829
This paper aims to study the effect of Ziziphi Spinosae Semen extracts on chronic unpredictable mild stress(CUMS)-induced depression-like and insomnia behavior models of mice. The CUMS-induced depression-like and insomnia behavior model of mice was established by CUMS treatment for three weeks. The mice were randomly divided into control group, model group, positive drug diazepam group(2 mg·kg~(-1)), as well as low-dose group(1.95 g·kg~(-1)), medium-dose group(3.9 g·kg~(-1)), and high-dose group(7.8 g·kg~(-1)) of Ziziphi Spinosae Semen extracts, with 18 mice in each group. On the 15th day of modeling, the drug was administered intragastrically once a day for one week. Then, the pentobarbital sodium cooperative righting experiment, open field experiment, and elevated plus maze experiment were carried out, respectively. The contents of neurotransmitters 5-hydroxytryptamine(5-HT) and 5-hydroxyindoleacetic acid(5-HIAA) in serum and thalamus of mice, as well as the levels of corticotropin releasing hormone(CRH), adrenocorticotropic hormone(ACTH), and corticosterone(CORT) in serum, were determined by enzyme-linked immunosorbent assay(ELISA). The neuron damage in the hippocampus of mice was observed by hematoxylin-eosin(HE) staining and Nissl staining. Western blot was used to detect the expressions of tryptophan hydroxylase 2(TPH2), serotonin transporter(SERT), monoamine oxidase A(MAOA), five prime repressors under dual repression binding protein 1(Freud1), synaptic plasticity-related proteins [cellular gene FOS(C-FOS), postsynaptic density protein 95(PSD95), synapsin 1(SYN1), and activity-regulated cytoskeleton-associated gene(ARC)], blood-brain barrier(BBB) permeability-related proteins [zonula occludens 1(ZO-1), occludin, and claudin 1], inflammatory factors [NOD-, LRR-and pyrin domain-containing protein 3(NLRP3), apoptosis-associated speck-like protein(ASC), gasdermin D(GSDMD), caspase-3, and caspase-8], and antioxidant factors [nuclear factor erythroid 2-related factor 2(NRF2) and heme oxygenase 1(HO1)] in thalamic tissue of mice. The results indicated that compared with that in the model group, the sleep latency was significantly shortened, and the sleep duration was significantly prolonged in each dose group of Ziziphi Spinosae Semen extracts. The number of visits to the central area of the open field and the distance and time of visits were significantly increased in each dose group of Ziziphi Spinosae Semen extracts. In addition, the proportion of distance and time of entering the open arm area of the elevated plus maze was significantly increased in each dose group of Ziziphi Spinosae Semen extracts. The contents of 5-HT and 5-HIAA in serum and thalamus of mice increased to varying degrees in each dose group of Ziziphi Spinosae Semen extracts; the contents of CRH, ACTH, and CORT in serum of mice were significantly decreased. The protein expression of TPH2 was significantly increased. The protein expression of MAOA, SERT, and Freud1 was significantly decreased. Ziziphi Spinosae Semen extracts could also significantly reduce the protein expression of C-FOS but significantly increase the protein expression of PSD95, ARC, and SYN1. They could reduce the pathological damage of the hippocampus in mice and significantly increase the protein expression of ZO-1, occluding, and claudin 1. The protein expression of NLRP3, GSDMD, ASC, caspase-3, and caspase-8 in the thalamic tissue of mice was significantly decreased, and the protein expression of HO1 and NRF2 was significantly increased. In conclusion, Ziziphi Spinosae Semen extracts could effectively improve sleep disorders and depression-like behaviors in CUMS-induced model mice, which may be related to regulating the 5-HT anabolism process and hypothalamic-pituitary-adrenal(HPA) axis-related hormone levels, reducing pathological damage in the hippocampus, improving synaptic plasticity, repairing BBB integrity, and alleviating inflammatory response and oxidative stress damage.
Animals
;
Ziziphus/chemistry*
;
Mice
;
Male
;
Depression/psychology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Sleep Initiation and Maintenance Disorders/psychology*
;
Stress, Psychological/complications*
;
Behavior, Animal/drug effects*
;
Humans
;
Disease Models, Animal
7.Effect of total secondary ginsenosides on apoptosis and energy metabolism of H9c2 cells under hypoxia based on mitochondrial biogenesis.
Zhong-Jie YUAN ; Yue XIAO ; Zhen LIU ; Ai-Qun ZHANG ; Bin LI ; Shang-Xian GAO
China Journal of Chinese Materia Medica 2025;50(5):1255-1266
This study explores the effect of total secondary ginsenosides(TSG) on apoptosis and energy metabolism in H9c2 cells under hypoxia and its potential mechanisms. H9c2 cell viability was observed and the apoptosis rate was calculated to determine suitable intervention concentrations of TSG, antimycin A complex(AMA), and coenzyme Q10(CoQ10), along with the duration of hypoxia. H9c2 cells at the logarithmic phase were divided into a normal group, a model group, a TSG group, an AMA group, a TSG+AMA group, and a CoQ10 group. All groups, except the normal group, were treated with their respective intervention drugs and cultured under hypoxic conditions. Adenosine triphosphate(ATP) content and creatine kinase(CK) activity were measured using an ATP chemiluminescence assay kit and a CK colorimetric assay kit. Flow cytometry was used to assess apoptosis rates, and Western blot evaluated the expression levels of apoptosis-related proteins, including B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), cysteinyl aspartate-specific protease(caspase)-3, caspase-8, and caspase-9, as well as mitochondrial biogenesis-related proteins peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α), estrogen-related receptor-α(ERRα), nuclear respiratory factor(NRF)-1, NRF-2, peroxisome proliferator activated receptor-α(PPARα), and Na~+-K~+-ATPase. RT-PCR was employed to analyze the mRNA expression of mitochondrial biogenesis factors, including PGC-1α, ERRα, NRF-1, NRF-2, PPARα, mitochondrial transcription factor A(TFAM), mitochondrial cytochrome C oxidase 1(COX1), and mitochondrial NADH dehydrogenase subunit 1(ND1), ND2. The selected intervention concentrations were 7.5 μg·mL~(-1) for TSG, 10 μmol·L~(-1) for AMA, and 1×10~(-4) mol·L~(-1) for CoQ10, with a hypoxia duration of 6 h. Compared with the normal group, the model group showed decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression in H9c2 cells. Additionally, the protein and mRNA expression levels of mitochondrial biogenesis-related factors(PGC-1α, ERRα, NRF-1, NRF-2, PPARα), mRNA expression of TFAM, COX1, and ND1, ND2, and protein expression of Na~+-K~+-ATPase in mitochondrial DNA, were also reduced. In the TSG and CoQ10 groups, ATP content and CK activity increased, and apoptosis rates decreased compared with those in the model group. The TSG group showed decreased protein expression of apoptosis-related proteins Bax, caspase-3, caspase-8, and caspase-9, increased protein and mRNA expression of mitochondrial biogenesis factors PGC-1α, ERRα, NRF-1, and PPARα, and increased NRF-2 protein expression and TFAM mRNA expression in mitochondrial DNA. Conversely, in the AMA group, ATP content and CK activity decreased, the apoptosis rate increased, Bcl-2 expression decreased, and Bax, caspase-3, caspase-8, and caspase-9 expression increased, alongside reductions in PGC-1α, ERRα, NRF-1, NRF-2, PPARα protein and mRNA expression, as well as TFAM, COX1, ND1, ND2 mRNA expression and Na~+-K~+-ATPase protein expression. Compared with the TSG group, the TSG+AMA group exhibited decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression, along with decreased PGC-1α, ERRα, NRF-1, NRF-2, and PPARα protein and mRNA expression and TFAM, COX1, and ND1, ND2 mRNA expression. Compared with the AMA group, the TSG+AMA group showed increased CK activity, decreased apoptosis rate, increased Bcl-2 expression, and decreased Bax, caspase-8, and caspase-9 expression. Additionally, the protein and mRNA expression of PGC-1α, ERRα, NRF-1, PPARα, mRNA expression of TFAM, COX1, ND1, ND2, and Na~+-K~+-ATPase protein expression increased. In conclusion, TSG enhance ATP content and CK activity and inhibit apoptosis in H9c2 cells under hypoxia, and the mechanisms may be related to the regulation of PGC-1α, ERRα, NRF-1, NRF-2, PPARα, and TFAM expression, thus promoting mitochondrial biogenesis.
Apoptosis/drug effects*
;
Ginsenosides/pharmacology*
;
Energy Metabolism/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Line
;
Cell Hypoxia/drug effects*
;
Organelle Biogenesis
;
Adenosine Triphosphate/metabolism*
;
Humans
;
Cell Survival/drug effects*
8.Single-cell and spatial transcriptomic analysis reveals that an immune cell-related signature could predict clinical outcomes for microsatellite-stable colorectal cancer patients receiving immunotherapy.
Shijin YUAN ; Yan XIA ; Guangwei DAI ; Shun RAO ; Rongrong HU ; Yuzhen GAO ; Qing QIU ; Chenghao WU ; Sai QIAO ; Yinghua XU ; Xinyou XIE ; Haizhou LOU ; Xian WANG ; Jun ZHANG
Journal of Zhejiang University. Science. B 2025;26(4):371-392
Recent data suggest that vascular endothelial growth factor receptor inhibitor (VEGFRi) can enhance the anti-tumor activity of the anti-programmed cell death-1 (anti-PD-1) antibody in colorectal cancer (CRC) with microsatellite stability (MSS). However, the comparison between this combination and standard third-line VEGFRi treatment is not performed, and reliable biomarkers are still lacking. We retrospectively enrolled MSS CRC patients receiving anti-PD-1 antibody plus VEGFRi (combination group, n=54) or VEGFRi alone (VEGFRi group, n=32), and their efficacy and safety were evaluated. We additionally examined the immune characteristics of the MSS CRC tumor microenvironment (TME) through single-cell and spatial transcriptomic data, and an MSS CRC immune cell-related signature (MCICRS) that can be used to predict the clinical outcomes of MSS CRC patients receiving immunotherapy was developed and validated in our in-house cohort. Compared with VEGFRi alone, the combination of anti-PD-1 antibody and VEGFRi exhibited a prolonged survival benefit (median progression-free survival: 4.4 vs. 2.0 months, P=0.0024; median overall survival: 10.2 vs. 5.2 months, P=0.0038) and a similar adverse event incidence. Through single-cell and spatial transcriptomic analysis, we determined ten MSS CRC-enriched immune cell types and their spatial distribution, including naive CD4+ T, regulatory CD4+ T, CD4+ Th17, exhausted CD8+ T, cytotoxic CD8+ T, proliferated CD8+ T, natural killer (NK) cells, plasma, and classical and intermediate monocytes. Based on a systemic meta-analysis and ten machine learning algorithms, we obtained MCICRS, an independent risk factor for the prognosis of MSS CRC patients. Further analyses demonstrated that the low-MCICRS group presented a higher immune cell infiltration and immune-related pathway activation, and hence a significant relation with the superior efficacy of pan-cancer immunotherapy. More importantly, the predictive value of MCICRS in MSS CRC patients receiving immunotherapy was also validated with an in-house cohort. Anti-PD-1 antibody combined with VEGFRi presented an improved clinical benefit in MSS CRC with manageable toxicity. MCICRS could serve as a robust and promising tool to predict clinical outcomes for individual MSS CRC patients receiving immunotherapy.
Humans
;
Colorectal Neoplasms/drug therapy*
;
Male
;
Female
;
Immunotherapy
;
Middle Aged
;
Aged
;
Tumor Microenvironment/immunology*
;
Retrospective Studies
;
Microsatellite Instability
;
Transcriptome
;
Single-Cell Analysis
;
Programmed Cell Death 1 Receptor/immunology*
;
Gene Expression Profiling
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Adult
;
Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors*
9.Pathogenicity and Transcriptomic Profiling Revealed Activation of Apoptosis and Pyroptosis in Brain of Mice Infected with the Beta Variant of SARS-CoV-2.
Han LI ; Bao Ying HUANG ; Gao Qian ZHANG ; Fei YE ; Li ZHAO ; Wei Bang HUO ; Zhong Xian ZHANG ; Wen WANG ; Wen Ling WANG ; Xiao Ling SHEN ; Chang Cheng WU ; Wen Jie TAN
Biomedical and Environmental Sciences 2025;38(9):1082-1094
OBJECTIVE:
Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection frequently develop central nervous system damage, yet the mechanisms driving this pathology remain unclear. This study investigated the primary pathways and key factors underlying brain tissue damage induced by the SARS-CoV-2 beta variant (lineage B.1.351).
METHODS:
K18-hACE2 and C57BL/6 mice were intranasally infected with the SARS-CoV-2 beta variant. Viral replication, pathological phenotypes, and brain transcriptomes were analyzed. Gene Ontology (GO) analysis was performed to identify altered pathways. Expression changes of host genes were verified using reverse transcription-quantitative polymerase chain reaction and Western blot.
RESULTS:
Pathological alterations were observed in the lungs of both mouse strains. However, only K18-hACE2 mice exhibited elevated viral RNA loads and infectious titers in the brain at 3 days post-infection, accompanied by neuropathological injury and weight loss. GO analysis of infected K18-hACE2 brain tissue revealed significant dysregulation of genes associated with innate immunity and antiviral defense responses, including type I interferons, pro-inflammatory cytokines, Toll-like receptor signaling components, and interferon-stimulated genes. Neuroinflammation was evident, alongside activation of apoptotic and pyroptotic pathways. Furthermore, altered neural cell marker expression suggested viral-induced neuroglial activation, resulting in caspase 4 and lipocalin 2 release and disruption of neuronal molecular networks.
CONCLUSION
These findings elucidate mechanisms of neuropathogenicity associated with the SARS-CoV-2 beta variant and highlight therapeutic targets to mitigate COVID-19-related neurological dysfunction.
Animals
;
COVID-19/genetics*
;
Mice
;
Brain/metabolism*
;
Apoptosis
;
Mice, Inbred C57BL
;
SARS-CoV-2/physiology*
;
Pyroptosis
;
Gene Expression Profiling
;
Transcriptome
;
Male
;
Female
10.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.

Result Analysis
Print
Save
E-mail