1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Anti-tumor effect of metal ion-mediated natural small molecules carrier-free hydrogel combined with CDT/PDT.
Wen-Min PI ; Gen LI ; Xin-Ru TAN ; Zhi-Xia WANG ; Xiao-Yu LIN ; Hai-Ling QIU ; Fu-Hao CHU ; Bo WANG ; Peng-Long WANG
China Journal of Chinese Materia Medica 2025;50(7):1770-1780
Metal ion-promoted chemodynamic therapy(CDT) combined with photodynamic therapy(PDT) offers broad application prospects for enhancing anti-tumor effects. In this study, glycyrrhizic acid(GA), copper ions(Cu~(2+)), and norcantharidin(NCTD) were co-assembled to successfully prepare a natural small-molecule, carrier-free hydrogel(NCTD Gel) with excellent material properties. Under 808 nm laser irradiation, NCTD Gel responded to the tumor microenvironment(TME) and acted as an efficient Fenton reagent and photosensitizer, catalyzing the conversion of endogenous hydrogen peroxide(H_2O_2) within the tumor into oxygen(O_2), and hydroxyl radicals(·OH, type Ⅰ reactive oxygen species) and singlet oxygen(~1O_2, type Ⅱ reactive oxygen species), while depleting glutathione(GSH) to stabilize reactive oxygen species and alleviate tumor hypoxia. In vitro and in vivo experiments demonstrated that NCTD Gel exhibited significant CDT/PDT synergistic therapeutic effects. Further safety evaluation and metabolic testing confirmed its good biocompatibility and safety. This novel hydrogel is not only simple to prepare, safe, and cost-effective but also holds great potential for clinical transformation, providing insights and references for the research and development of metal ion-mediated hydrogel-based anti-tumor therapies.
Hydrogels/chemistry*
;
Animals
;
Photochemotherapy
;
Humans
;
Mice
;
Antineoplastic Agents/administration & dosage*
;
Photosensitizing Agents/chemistry*
;
Neoplasms/metabolism*
;
Female
;
Copper/chemistry*
;
Reactive Oxygen Species/metabolism*
;
Tumor Microenvironment/drug effects*
;
Cell Line, Tumor
;
Male
4.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
6.Investigation on the risk of recurrent immune thrombocytopenia in children and establishment of a predictive model
Chentao SHEN ; Yalin XIA ; Yeping SHENG ; Peipei CHU ; Jianqin LI
Basic & Clinical Medicine 2024;44(1):84-91
Objective To investigate the recurrence of immune thrombocytopenia(ITP)in children and to establish a predictive model.Methods A total of 288 children with ITP admitted to Children's Hospital of Wujiang District and Children's Hospital Affiliated to Suzhou University from January 2018 to April 2022 were collected.The factors potentially related to the recurrence of ITP in children were screened.The children in the model group were divided into 2 groups according to the presence or absence of recurrence and the indicators of the 2 groups were compared.After screening the potential influencing factors by LASSO regression and the independent influencing factors of relapse in children with ITP patients by Logstic regression analysis,we constructed a column-line graph model by using R language and validated it.Results A total of 37(18.47%)of 201 patients in the model group experienced relapse.The age,blood type,duration of disease before treatment,antecedent infections,bleeding,initial treatment regimen,antinuclear antibody titer,initial count and mean platelet volume,initial platelet distri-bution width,initial peripheral blood lymphocyte count and time length to effective platelet count after treatment were found in the recurrence group versus the non-recurrence group The difference was statistically significant(P<0.05).The results of multifactorial logistic regression analysis performed on the basis of LASSO regression showed that blood type,duration of illness before treatment,antecedent infection,initial treatment regimen,ini-tial peripheral blood lymphocyte count,and time to effective platelet count after treatment were independent influ-ences on the conversion of cough variant asthma to classic asthma in children.Based on the results of the multifac-torial analysis,a column chart model for predicting ITP recurrence in children was developed in R.The results of the receiver operating characteristic(ROC)analysis showed that the area under curve(AUC)of the column chart model for predicting ITP recurrence in children in the modeling group was 0.867[95%CI(0.796,0.938)]with a sensitivity of 84.2%and a specificity of 73.1%,and that in the validation group,the AUC was 0.838[95%CI(0.765),0.911]with a sensitivity of 82.3%and a specificity of 78.4%,0.911)]sensitivity was 82.3%and specificity was 78.4%.The Bootstrap method was used to repeat the sampling 1000 times,and the validation group was used for validation.The results of the calibration curve showed that the prediction curves of the model group and the validation group were basically fitted with the standard curve,suggesting that the model prediction accuracy was high.The results of the decision curve analysis of the model group showed that the net benefit rate of patients was greater than zero when the probability threshold of the column line graph model of pre-dicting ITP recurrence in children was 0.15-0.75.Conclusions ITP recurrence in children is mainly affected by the patient's age,blood type,and pre-treatment course of the disease,and the column-line diagram model based on these factors has a high accuracy and differentiation for ITP recurrence in parenting children.
7.Discussion of Hp(3) calibration with two thermoluminescent dosimeters in the same standard X-ray RQR radiation field
Wenyan LI ; Guiying ZHANG ; Lantao LIU ; Dongsheng NIU ; Zeqin GUO ; Zhichao WANG ; Hua TUO ; Heyan WU ; Tingting XIA ; Nini CHU ; Jichuan LAI ; Jiaojiao CHEN
Chinese Journal of Radiological Health 2024;33(3):318-322
Objective To compare Hp(3) calibration with a homemade (A) thermoluminescent dosimeter (TLD) and an imported (B) TLD in a standard X-ray RQR radiation field, to explore the different responses of A and B, and to provide foundation for the calibration of Hp(3). Methods A column mode was selected. Hp(3) calibration was performed using A and B in a standard X-ray RQR radiation field in the Secondary Standard Dosimetry Laboratory, National Institute for Radiological Protection, China Center for Disease Control and Prevention. Angle response, energy response, and linear response were calibrated with RQR4 (60 kV), RQR7 (90 kV), and RQR9 (120 kV), respectively. Results In terms of angle response, the calibration results of A were relatively high, while the calibration results of B were relatively low. In terms of energy response, the calibration results showed a similar pattern to angle response. In terms of linear response, the calibration results of both A and B were satisfactory. Conclusion Both A and B can be used for normal calibration of Hp(3) in a standard X-ray RQR radiation field. However, in actual monitoring, attention should be paid to the energy and angle response values of TLDs.
8.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.
9.Pathogenesis and Treatment of Recurrent Granulomatous Mastitis Based on "Deficiency, Toxin and Blood Stasis"
Aijing CHU ; Yuezhu WANG ; Jieying ZHENG ; Zhongyuan XIA
Journal of Traditional Chinese Medicine 2024;65(12):1287-1291
To explore the pathogenesis and treatment of recurrent granulomatous mastitis based on "deficiency, toxin and blood stasis". It is believed that the main pathogenesis of recurrent granulomatous mastitis is spleen and stomach deficiency due to chronic illness, and at the same time, the persistent or intermittent presence of various causes makes the residual toxin unclear, which leads to the stagnation of local meridians and collaterals in the breast, accumulation of lumps, and then suppuration. Deficiency of qi and blood in zang-fu organs is the main cause of this disease, and residual toxin is the key factor of this disease. The treatment should focus on promoting therapy, promoting with dispersing, expelling with supplementing, supplementing with warming and dredging, dissolving toxins and releasing stasis, and the prescription is based on modified Tuoli Xiaodu Powder (托里消毒散) or self-prescribed Jiangru No.2 Formula (浆乳2号方). Overall, the treatment should combine deficiency, toxin and blood stasis with different syndrome differentiation and treatment, reinforce healthy qi and express toxin, and activate blood circulation and dredge collaterals with flexibly modification, to promote disease healing.
10.Dayuanyin Regulates TLR/MAPK/NF-κB Pathway for Preventing and Treating Acute Lung Injury Induced by H1N1 Infection
Chengze LI ; Fuhao CHU ; Yuan LI ; Yunze LIU ; Haocheng ZHENG ; Sici WANG ; Yixiao GU ; Wanhong ZHU ; Ruoshi ZHANG ; Xingjian SONG ; Cong GAI ; Xia DING
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(18):52-60
ObjectiveTo investigate the therapeutic effect of Dayuanyin on acute lung injury induced by H1N1 infection and decipher the potential mechanism. MethodThe constituents in Dayuanyin were analyzed by ultra-high performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS). Forty-eight female BALB/c mice were randomized into normal, model, oseltamivir (19.5 mg·kg-1), and low-, medium-, and high-dose (2.73, 5.46, 10.92 g·kg-1) Dayuanyin groups. The normal and model groups were administrated with deionized water by gavage, and the other groups were administrated with the corresponding drugs by gavage. On day 3 of drug administration, the normal group received nasal inhalation of normal saline, and the other groups were inoculated intranasally with A/RP/8/34 (H1N1) for the modeling of influenza virus infection. Mice were administrated with drugs continuously for 7 days and weighed daily. Sampling was performed 12 h after the last administration, and the lung tissue was weighed to calculate the lung index. Hematoxylin-eosin staining was performed to observe the pathological and morphological changes of the lung tissue and bronchi. The cytometric bead array (CBA) was used to measure the serum levels of interferon-gamma (IFN-γ), C-X-C motif ligand 1 (CXCL1), tumor necrosis factor-alpha (TNF-α), chemokine ligand 2 (CCL2), interleukin-12p70 (IL-12p70), chemokine ligand 5 (CCL5), interleukin-1β (IL-1β), chemokine (C-X-C motif) ligand 10 (CXCL10), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-10 (IL-10), interferon-beta (IFN-β), interferon-alpha (IFN-α), and interleukin-6 (IL-6). According to the results of mass spectrometry and network pharmacology, we analyzed the mechanism of Dayuanyin in treating acute lung injury caused by H1N1. The protein levels of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-kappa B (NF-κB), and their phosphorylated forms were determined by Western blot. The mRNA levels of myeloid differentiation factor 88 (MyD88), Toll-like receptor 3 (TLR3), Toll-like receptor 7 (TLR7), and Toll-like receptor 8 (TLR8) in the lung tissue were measured by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultA total of 57 compounds, including paeoniflorin and baicalein, were detected in Dayuanyin. Compared with the normal group, the model group showed decreased body weight (P<0.01), lung edema and hemorrhage, increased lung index (P<0.01), and elevated levels of IFN-γ, IL-12p70, CCL5, IL-1β, CXCL10, GM-CSF, IFN-β, and IL-6 (P<0.01). Compared with the model group, Dayuanyin attenuated alveolar wall thickening, capillary congestion, and immune cell infiltration, reduced the alterations in body weight and lung index (P<0.01), and down-regulated the protein levels of IFN-γ, IL-12p70, CCL5, IL-1β, CXCL10, GM-CSF, IFN-β, and IL-6 (P<0.01). A total of 57 key genes were predicted by network pharmacological analysis, of which the MAPK signaling pathway was the main target signaling pathway. Compared with the normal group, the model group showed up-regulation in the protein levels of phosphorylation (p)-ERK1/2, p-p38 MAPK, and p-NF-κB (P<0.01) and the mRNA levels of TLR7, TLR8, MyD88, and TLR3 (P<0.05, P<0.01). Compared with the model group, Dayuanyin lowered the phosphorylation levels of ERK1/2, p38 MAPK, and NF-κB p65 in a dose-dependent manner (P<0.01) and down-regulated the mRNA levels of TLR3, TLR7, TLR8, and MyD88 (P<0.01). ConclusionDayuanyin can prevent and control H1N1 infection-induced acute lung injury by inhibiting the TLR/MAPK/NF-κB signaling pathway.

Result Analysis
Print
Save
E-mail