1.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
2.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
3.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
4.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
5.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
Purpose:
The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations.
Methods:
This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits.
Results:
Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01).
Conclusion
Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors.
6.Research progress on the endocytosis pathway of nanoscale metal-organic frameworks drug carriers
Yu-xuan WANG ; Wen-jia XIE ; Hui-le GAO ; Xi-bo PEI
Acta Pharmaceutica Sinica 2024;59(5):1196-1209
Metal-organic frameworks (MOFs) are crystalline materials with a multidimensional porous network structure, formed through coordination bonds with metal ions as nodes and organic ligands as connecting bridges. Due to their excellent physicochemical properties, MOFs have extensive applications in the field of biomedicine, ranging from antibacterials, drug carriers, imaging to sensors. Nanoscale metal-organic frameworks (nMOFs), commonly utilized drug carriers, can gain enhanced safety, targeted delivery, and superior therapeutic effect through endocytosis. In this review, we comprehensively summarize the factors influencing the endocytosis of nMOFs, focusing on three key physicochemical properties, particle size, morphology and surface modification. Based on different illness models, the review succinctly summarizes the latest advancements in understanding the endocytosis pathways of nMOFs while critically reflecting on the inherent limitations of current research methods. Lastly, the review offers valuable insights into future research methodologies and objectives, aiming to lay the groundwork and provide meaningful guidance for the synthesis and development of nMOFs as promising versatile drug carriers.
7.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
8.Development of a fast Monte Carlo dose verification module for helical tomotherapy
Shijun LI ; Ning GAO ; Bo CHENG ; Yifei PI ; Haiyang WANG ; Yankui CHANG ; Xi PEI ; XU George XIE
Chinese Journal of Medical Physics 2024;41(11):1321-1326
Objective To develop a GPU-based Monte Carlo dose calculation module for helical tomotherapy(TOMO),and integrate it into the commercial software ArcherQA to achieve fast and accurate dose verification in clinic.Methods The TOMO treatment head was modeled using TOPAS to obtain phase space files,and a fast weight tuning algorithm was used to simulate particle transport in multi-leaf collimator for improving computational efficiency,and finally,GPU-based Monte Carlo algorithms in ArcherQA were used to simulate particle transport in patients.To verify the model accuracy,the ArcherQA calculated results in water tank were compared with measured data for different open fields.In addition,multiple comparisons among ArcherQA results,TPS results and ArcCHECK results were conducted on 15 clinical cases(5 cases in the head and neck,5 cases in the chest and abdomen,and 5 cases in the whole body).Results In the water tank tests for 40 cm×5.0 cm,40 cm×2.5 cm and 40 cm× 1.0 cm radiation fields,the average global relative errors of the percentage depth dose,transverse dose distribution,and longitudinal dose distribution calculated by ArcherQA with the corresponding measured values were 0.72%,0.66%,and 0.54%,respectively.Over 98%of the voxels had a global relative error of less than 1%.As for 15 clinical cases,in 2%/2 mm criteria,the mean Gamma passing rate was 98.1%between ArcherQA and TPS,99.1%between TPS and ArcCHECK,and 99.4%between ArcherQA and ArcCHECK.The uncertainty of the simulation maintained less than 1%,and the average time taken for calculation based on patient CT vs ArcCHECK phantom was 87 s vs 64 s.Conclusion ArcherQA can be used for independent dose validation for TOMO plans for it can provide fast and accurate dose calculations.
9.Application of ArcherQA for independent dose verification of MR-guided online adaptive radiotherapy plans
Meining CHEN ; Shouliang DING ; Yongbao LI ; Bin WANG ; Bo CHENG ; Xi PEI ; Xiaoyan HUANG ; Hongdong LIU
Chinese Journal of Radiological Medicine and Protection 2024;44(5):379-385
Objective:To explore the feasibility of applying ArcherQA to independent dose verification of MR-guided online adaptive radiotherapy (ART) plans performed on Elekta Unity 1.5 Tesla (T) magnetic resonance-linear accelerator (MR-Linac).Methods:The dose calculation accuracy of ArcherQA under a specific magnetic field was validated using a homogeneous water phantom. A total of 32 patients who received MR-guided online ART on Elekta Unity were randomly selected by lottery, with 32 offline plans and 177 online plans for five treatment sites (brain, mediastinum, liver, kidney, and vertebral body) enrolled. Finally, the γ pass rates (threshold: 10%; criteria: 3 mm/3% and 2 mm/2%) were compared among the result upon independent dose verification of ArcherQA, measurements of ArcCheck, and calculations using the Monaco treatment planning system (TPS) to quantitatively evaluate the accuracy and efficiency of ArcherQA in independent dose verification of online plans on Elekta Unity.Results:ArcherQA was proven accurate in calculating the dose distribution of therapeutic photon beams under the specific magnetic field. With the 3 mm/3% criterion, the γ pass rates of verification result exceeded 99% in all square fields of a water phantom. Under the stricter 2 mm/2% criterion, the γ pass rates also surpassed 95% in all square fields except 20 cm × 20 cm field. Regarding the verification of treatment plans, the ArcherQA result were found to be highly consistent with those measured or calculated using ArcCheck and Monaco TPS, with the average γ pass rates exceeding 99% under the 3 mm/3% criterion and above 97% under the 2 mm/2% criterion. ArcherQA was acceptably efficient for independent dose verification of online plans, with 50 to 150 s, (108 s on average) required to complete the independent dose verification of 177 online plans.Conclusions:ArcherQA allows for accurately and efficiently calculating the dose distribution of therapeutic photon beams under a specific magnetic field, establishing it as an effective supplementary tool for independent dose calculation of MR-guided offline and online ART plans, thereby ensuring the safety of patient treatment plans.
10.Exploring the feasibility of GPU-based fast Monte Carlo software ARCHER-NM in calculating individualized doses of beta radiopharmaceutical therapy
Junyi LIU ; Bo CHENG ; Zhao PENG ; Miao QI ; Xi PEI ; Xie XU
Chinese Journal of Radiological Medicine and Protection 2024;44(10):871-878
Objective:To verify the feasibility and advantages of ARCHER-NM, a GPU-based fast Monte Carlo (MC) dose calculation engine, in calculating individualized doses of radiopharmaceutical therapy (RPT) through simulation experiments.Methods:The calculation reliability and efficiency of ARCHER-NM were verified by comparing its result with those of the MC software GATE in the water phantom experiments of radionuclide point sources and the dose calculations for RPT-treated patients. In the water phantom experiments, the generality of ARCHER-NM on different radionuclides was verified using common radionuclides like 67Cu, 89Sr, 90Y, 131I, 177Lu, and 188Re. The calculations of individualized doses for RPT-treated patients were tested based on the data of two patients from the University of Michigan′s public dataset for 177Lu-DOTATATE-treated cases. Gamma passing rates, dose volume histograms (DVHs), and average organ doses were employed to assess the consistency of ARCHER-NM and GATE in patients′ dose calculation result. The computing time was statistically analyzed to assess the efficiency of MC calculations. Results:In the water phantom experiments for all radionuclides, the relative differences of average doses between ARCHER-NM and GATE ranged from -1.63% to 2.29%, with an average absolute difference of 1.15%, suggesting high consistency. As indicated by the dose result of the two patients, the average doses for all organs between ARCHER-NM and GATE exhibited percentage errors of below 4%. The gamma passing rates for the two patients were 98.8% and 98.6%, respectively, under the 2 mm/1% standard within the 3% maximum dose isodose line. The simulation of 5 × 10 9decay required 90 s for ARCHER-NM on a personal host configured with a 24 GB Nvidia Titan RTX, whereas GATE took over 9 h on a 112-thread server for the same simulation. Conclusions:The water phantom experiments substantiate the accuracy and generality of ARCHER-NM for dose calculations. Based on the organ dose calculations of 177Lu-DOTATATE-treated patients, ARCHER-NM proves accurate and quick in calculating the individualized internal doses for RPT-treated patients. Therefore, ARCHER-NM plays a positive role in the dose planning of subsequent treatment and the protection of organs at risk including kidneys.

Result Analysis
Print
Save
E-mail