1.Small Intestine Lipid Absorption and Health: The Improvement Effect of Exercise Under The Challenge of High-fat Diet
Wei-Huan WANG ; Yu-Xi DAI ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(6):1560-1573
The two core causes of obesity in modern lifestyle are high-fat diet (HFD) and insufficient physical activity. HFD can lead to disruption of gut microbiota and abnormal lipid metabolism, further exacerbating the process of obesity. The small intestine, as the “first checkpoint” for the digestion and absorption of dietary lipids into the body, plays a pivotal role in lipid metabolism. The small intestine is involved in the digestion, absorption, transport, and synthesis of dietary lipids. The absorption of lipids in the small intestine is a crucial step, as overactive absorption leads to a large amount of lipids entering the bloodstream, which affects the occurrence of obesity. HFD can lead to insulin resistance, disruption of gut microbiota, and inflammatory response in the body, which can further induce lipid absorption and metabolism disorders in the small intestine, thereby promoting the occurrence of chronic metabolic diseases such as obesity. Long term HFD can accelerate pathological structural remodeling and lipid absorption dysfunction of the small intestine: after high-fat diet, the small intestine becomes longer and heavier, with excessive villi elongation and microvilli elongation, thereby increasing the surface area of lipid absorption and causing lipid overload in the small intestine. In addition, overexpression of small intestine uptake transporters, intestinal mucosal damage induced “intestinal leakage”, dysbiosis of intestinal microbiota, ultimately leading to abnormal lipid absorption and chronic inflammation, accelerating lipid accumulation and obesity. Exercise, as one of the important means of simple, economical, and effective proactive health interventions, has always been highly regarded for its role in improving lipid metabolism homeostasis. The effect of exercise on small intestine lipid absorption shows a dose-dependent effect. Moderate to low-intensity aerobic exercise can improve the intestinal microenvironment, regulate the structure and lipid absorption function of the small intestine, promote lipid metabolism and health, while vigorous exercise, excessive exercise, and long-term high-intensity training can cause intestinal discomfort, leading to the destruction of intestinal structure and related symptoms, affecting lipid absorption. Long term regular exercise can regulate the diversity of intestinal microbiota, inhibit inflammatory signal transduction such as NF-κB, enhance intestinal mucosal barrier function, and improve intestinal lipid metabolism disorders, further enhancing the process of small intestinal lipid absorption. Exercise also participates in the remodeling process of small intestinal epithelial cells, regulating epithelial structural homeostasis by activating cell proliferation related pathways such as Wnt/β-catenin. Exercise can regulate the expression of lipid transport proteins CD36, FATP, and NPC1L1, and regulate the function of small intestine lipid absorption. However, the research on the effects of long-term exercise on small intestine structure, villus structure, absorption surface area, and lipid absorption related proteins is not systematic enough, the results are inconsistent, and the relevant mechanisms are not clear. In the future, experimental research can be conducted on the dose-response relationship of different intensities and forms of exercise, exploring the mechanisms of exercise improving small intestine lipid absorption and providing theoretical reference for scientific weight loss. It should be noted that the intestine is an organ that is sensitive to exercise response. How to determine the appropriate range, threshold, and form of exercise intensity to ensure beneficial regulation of intestinal lipid metabolism induced by exercise should become an important research direction in the future.
2.Exercise Improves Metaflammation: The Potential Regulatory Role of BDNF
Yu-Xi DAI ; Wei-Huan WANG ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(9):2314-2331
Metaflammation is a crucial mechanism in the onset and advancement of metabolic disorders, primarily defined by the activation of immune cells and increased concentrations of pro-inflammatory substances. The function of brain-derived neurotrophic factor (BDNF) in modulating immune and metabolic processes has garnered heightened interest, as BDNF suppresses glial cell activation and orchestrates inflammatory responses in the central nervous system via its receptor tyrosine kinase receptor B (TrkB), while also diminishing local inflammation in peripheral tissues by influencing macrophage polarization. Exercise, as a non-pharmacological intervention, is extensively employed to enhance metabolic disorders. A crucial mechanism underlying its efficacy is the significant induction of BDNF expression in central (hypothalamus, hippocampus, prefrontal cortex, and brainstem) and peripheral (liver, adipose tissue, intestines, and skeletal muscle) tissues and organs. This induction subsequently regulates inflammatory responses, ameliorates metabolic conditions, and decelerates disease progression. Consequently, BDNF is considered a pivotal molecule in the motor-metabolic regulation axis. Despite prior suggestions that BDNF may have a role in the regulation of exercise-induced inflammation, systematic data remains inadequate. Since that time, the field continues to lack structured descriptions and conversations pertinent to it. As exercise physiology research has advanced, the academic community has increasingly recognized that exercise is a multifaceted activity regulated by various systems, with its effects contingent upon the interplay of elements such as type, intensity, and frequency of exercise. Consequently, it is imperative to transcend the prior study paradigm that concentrated solely on localized effects and singular mechanisms and transition towards a comprehensive understanding of the systemic advantages of exercise. A multitude of investigations has validated that exercise confers health advantages for individuals with metabolic disorders, encompassing youngsters, adolescents, middle-aged individuals, and older persons, and typically enhances health via BDNF secretion. However, exercise is a double-edged sword; the relationship between exercise and health is not linearly positive. Insufficient exercise is ineffective, while excessive exercise can be detrimental to health. Consequently, it is crucial to scientifically develop exercise prescriptions, define appropriate exercise loads, and optimize health benefits to regulate bodily metabolism. BDNF mitigates metaflammation via many pathways during exercise. Initially, BDNF suppresses pro-inflammatory factors and facilitates the production of anti-inflammatory factors by modulating bidirectional transmission between neural and immune cells, therefore diminishing the inflammatory response. Secondly, exercise stimulates the PI3K/Akt, AMPK, and other signaling pathways via BDNF, enhancing insulin sensitivity, reducing lipotoxicity, and fostering mitochondrial production, so further optimizing the body’s metabolic condition. Moreover, exercise-induced BDNF contributes to the attenuation of systemic inflammation by collaborating with several organs, enhancing hepatic antioxidant capacity, regulating immunological response, and optimizing “gut-brain” axis functionality. These processes underscore the efficacy of exercise as a non-pharmacological intervention for enhancing anti-inflammatory and metabolic health. Despite substantial experimental evidence demonstrating the efficacy of exercise in mitigating inflammation and enhancing BDNF levels, numerous limitations persist in the existing studies. Primarily, the majority of studies have concentrated on molecular biology and lack causal experimental evidence that explicitly confirms BDNF as a crucial mediator in the exercise regulation of metaflammation. Furthermore, the outcomes of current molecular investigations are inadequately applicable to clinical practice, and a definitive pathway of “exercise-BDNF-metaflammation” remains unestablished. Moreover, the existing research methodology, reliant on animal models or limited human subject samples, constrains the broad dissemination of the findings. Future research should progressively transition from investigating isolated and localized pathways to a comprehensive multilevel and multidimensional framework that incorporates systems biology and exercise physiology. Practically, there is an immediate necessity to undertake extensive, double-blind, randomized controlled longitudinal human studies utilizing multi-omics technologies (e.g., transcriptomics, proteomics, and metabolomics) to investigate the principal signaling pathways of BDNF-mediated metaflammation and to elucidate the causal relationships and molecular mechanisms involved. Establishing a more comprehensive scientific evidence system aims to furnish a robust theoretical framework and practical guidance for the mechanistic interpretation, clinical application, and pharmaceutical development of exercise in the prevention and treatment of metabolic diseases.
3.Total saponins from Trillium tschonoskii maxim alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis through Keap-1/Nrf2/HO-1 and Nrf2/SLC7A11/GPX4 pathways
Jian-Hong GAO ; Tian-Ying SONG ; Chao-Xi TIAN ; Fang-Yu ZHAO ; Yi-Duo HE ; Xin LIU ; Xian-Bing CHEN
Chinese Pharmacological Bulletin 2024;40(10):1850-1857
Aim To examine the neuroprotective im-pacts of total saponins from Trillium tschonoskii maxim(TST)on cerebral ischemia-reperfusion injury(CIRI)in rats and delve into the mechanisms of ferroptosis.Methods The CIRI model was prepared by dividing male SD rats into the model group,TST(0.1 g·kg-1)group,Donepezil hydrochloride(0.45 mg·kg-1)group,and sham group.The cognitive functions of rats in each group were assessed through the Morris water maze test,the changes in neurological function were evaluated using the Zea-Longa method,the infarct area was observed via TTC staining,and the pathologi-cal alterations in brain tissue were analysed using HE and Nissl staining.To further investigate the underly-ing mechanism,the mitochondrial structural changes were examined using transmission electron microscopy,and the levels of GSH-PX,MDA,and SOD were ana-lyzed.Additionally,the expressions of GPX4 and Nrf2 proteins were evaluated through immunohistochemistry and immunofluorescence.Furthermore,the protein lev-els of Keap1/Nrf2/HO-1 and Nrf2/SLC7A11/GPX4 pathways in rats were examined using Western blot-ting.Results The rats in the model group displayed diminished learning and memory capabilities in com-parison to those in the sham group,as well as a signifi-cantly increased cerebral infarction area and higher neurological function scores(P<0.01),significantly increased cerebral infarct area,disordered and loosely arranged neurons,and reduced Nissl bodies.Addition-ally,mitochondria showed typical signs of ferroptosis.Changes related to ferroptosis included decreased activ-ities of SOD and GSH-PX(P<0.01)and increased MDA levels(P<0.01).The expression of GPX4 and Nrf2-positive cells was significantly reduced,along with decreased fluorescence intensity of GPX4.Further-more,the protein expression of Keap1,Nrf2,HO-1,GPX4,SLC7A11 in the hippocampus decreased(P<0.05,P<0.01).Following the administration of TST,these effects showed improvement.Conclusions TST has neuroprotective effects,enhancing learning and memory abilities while reducing oxidative stress levels.The mechanism may involve the inhibition of ferroptosis through the Keap-1/Nrf2/HO-1 and Nrf2/SLC7 A11/GPX4 pathways.
4.Knockdown of chemokine receptor 3 inhibits hepatoblastoma cell proliferation and migration by weakening Wnt/β-catenin signaling pathway
Dao-Kui DING ; Yu-Hang YUAN ; Yan-An LI ; Xi-Chun CUI ; He-Ying YANG ; Jia DU ; Yang-Guang SU
Chinese Pharmacological Bulletin 2024;40(12):2347-2354
Aim To investigate the role and mecha-nism of CXC chemokine receptor 3(CXCR3)in hepa-toblastoma(HB).Methods The expression of CX-CR3 was detected by immunohistochemical and West-ern blot in 16 cases of HB tissue and adjacent normal liver tissue.The HB cells(Huh-6 and HepT1)were transfected with Con-shRNA,CXCR3-shRNA1,and CXCR3-shRNA2,respectively,and then divided into the Con-shRNA group,CXCR3-shRNA1 group,and CXCR3-shRNA2 group.Cell proliferation was detected by CCK-8 assay and EdU staining.Cell migration and invasion were detected by scratch and Transwell as-says.The expressions of β-catenin,c-Myc,cyclin D1,MMP-7 and MMP-9 were detected by Western blot.The tumor formation and tumor volume in each group were assessed using nude mouse xenograft tumor model,while the expressions of MMP-9 and Ki67 in tumor tissue were examined by immunohistochemistry.Results The expression of CXCR3 was up-regulated in HB tissue(P<0.01).Compared to the Con-shR-NA group,the viability,proliferation,migration and invasion of Huh-6 and HepT1 cells in the CXCR3-shR-NA1 and CXCR3-shRNA2 groups were reduced(P<0.01),the expressions of the Wnt/β-catenin signaling pathway related proteins were attenuated(P<0.01),the tumor grew slowly and the volume was significantly reduced(P<0.01),and the expressions of MMP-9 and Ki67 in tumor tissue decreased(P<0.01).Con-clusions Downregulation of CXCR3 hinders the pro-liferation and migration of HB cells,potentially as-cribed to the attenuation of Wnt/β-catenin signaling regulation.
5.Development and in vivo biomechanics of goat mobile artificial lumbar spine complex
Feng ZHANG ; Xi-Jing HE ; Jian-Tao LIU ; Rui WANG ; Jie QIN ; Quan-Jin ZANG ; Ting ZHANG ; Zhi-Yu LIU
China Journal of Orthopaedics and Traumatology 2024;37(3):281-287
Objective Mobile artificial lumbar complex(MALC)which suitable for reconstruction after subtotal lumbar resection in goats was developed,and to test stability of the complex and postoperative lumbar segmental motor function.Methods Eighteen male boer goats aged from 1 to 2 years old(weighted from 35 to 45 kg)were selected and divided into con-trol group,fusion group and non-fusion group,with 6 goats in each group.According to preoperative CT scans and MRI exami-nations of lumbar,the goat MALC was designed and performed by 3D printed for non-fusion group.Operation was performed on three groups respectively,and only vertebral body and disc were exposed in control group.In fusion group,L4 part of vertebral body and the upper and lower complete disc tissues were removed,and the lumbar spine bone plate fixation was performed with titanium mesh bone grafting.In non-fusion group,vertebral body and disc were removed in the same way,and MALC was im-planted.AP and lateral X-rays of lumbar vertebrae in goat were taken at 6 months after surgery,in order to understand whether the plant was dislocated,displaced and fractured.Biomechanical tests were performed on the specimens by mechanical instru-ment to measure range of motion(ROM)of L2,3,L,4,L4,5intervertebral space and the overall ROM of L2-5 lumbar vertebrae.Results MALC of lumbar vertebra was designed by 3D printing,and its component artificial vertebrae and upper and lower ar-tificial end plates were manufactured.The semi-spherical structure was fabricated by precision lathe using high-crosslinked polyethylene material,and the prosthesis was assembled.Postoperative AP and lateral X-rays of lumbar vertebra at 6 months showed the implant position of implant and MALC were good without displacement and dislocation.In vitro biomechanical test of lumbar vertebrae specimens:(1)There were no statistical significance in ROM of lumbar intervertebral space flexion and extension,lateral flexion and rotation on L.4 and L4,5,between non-fusion group and control group(P>0.05),while ROM of fu-sion group was significantly reduced compared with the other two groups(P<0.05).There were no significant difference in ROM of L2.3 intervertebral flexion and extension,lateral flexion and rotation between non-fusion group and control group(P>0.05),while fusion group was significantly increased compared with the other two groups(P<0.001).(2)There was no signifi-cant difference in overall lumbar ROM of L2-5(P>0.05).Conclusion The individual MALC could restore intervertebral height of lumbar vertebra while maintaining the stability of lumbar vertebra and re-establishing motor function of lumbar space.
6.Porcine SIRT5 promotes replication of foot and mouth disease virus type O in PK-15 cells
Guo-Hui CHEN ; Xi-Juan SHI ; Xin-Tian BIE ; Xing YANG ; Si-Yue ZHAO ; Da-Jun ZHANG ; Deng-Shuai ZHAO ; Wen-Qian YAN ; Ling-Ling CHEN ; Mei-Yu ZHAO ; Lu HE ; Hai-Xue ZHENG ; Xia LIU ; Ke-Shan ZHANG
Chinese Journal of Zoonoses 2024;40(5):421-429
The effect of porcine SIRT5 on replication of foot and mouth disease virus type O(FMDV-O)and the underlying regulatory mechanism were investigated.Western blot and RT-qPCR analyses were employed to monitor expression of endoge-nous SIRT5 in PK-15 cells infected with FMDV-O.Three pairs of SIRT5-specific siRNAs were synthesized.Changes to SIRT5 and FMDV-O protein and transcript levels,in addition to virus copy numbers,were measured by western blot and RT-qPCR analyses.PK-15 cells were transfected with a eukaryotic SIRT5 expression plasmid.Western blot and RT-qPCR analyses were used to explore the impact of SIRT5 overexpression on FMDV-O replication.Meanwhile,RT-qPCR analysis was used to detect the effect of SIRT5 overexpression on the mRNA expression levels of type I interferon-stimulated genes induced by SeV and FMDV-O.The results showed that expression of SIRT5 was up-regulated in PK-15 cells infected with FMDV-O and siRNA interfered with SIRT5 to inhibit FMDV-O replication.SIRT5 overexpression promoted FMDV-O replication.SIRT5 over-expression decreased mRNA expression levels of interferon-stimulated genes induced by SeV and FMDV-O.These results suggest that FMDV-O infection stimulated expression of SIRT5 in PK-15 cells,while SIRT5 promoted FMDV-O rep-lication by inhibiting production of type I interferon-stimula-ted genes.These findings provide a reference to further ex-plore the mechanism underlying the ability of porcine SIRT5 to promote FMDV-O replication.
7.Establishment and validation of a mouse liver injury model induced by chronic low-dose exposure to atrazine
Yu ZHU ; Yingshi SU ; Xi LIU ; Baoguo HE ; Lei QIN
Chinese Journal of Comparative Medicine 2024;34(6):73-81
Objective To establish a model of long-term atrazine(ATR)-induced liver injury in mice and to evaluate the hepatotoxic effects induced by ATR.Methods C57BL/6-N male mice were randomly divided into a control group and 1.5 mg/L and 150 mg/L ATR dose(ATR-L,ATR-H)groups.After 35 and 63 days,serum liver function biochemical indexes and inflammatory factors were detected,the hepatosomatic ratio was calculated,and the histopathology and ultrastructure of the liver were observed.Lipid peroxidation levels and antioxidant capacity,the activities of major phase I metabolic enzymes and phase Ⅱ detoxification enzymes,and the expression of related proteins in liver tissues were detected.Results Compared with the control group,the ATR groups showed significant changes in the AST/ALT ratio,levels of pro-inflammatory factors CCL2,TNF-α and IL-6,H2O2 content and activities of the metabolic enzymes NCR,CYTb5,and UDPGT(P<0.05).In the 150 mg/L ATR group,GGT content,peroxide levels(as indicated by malondialdehyde),and CYP1A2 expression were significantly increased(P<0.01),while GSH content was significantly decreased(P<0.05),and hepatocyte injury and mitochondrial vacuolation were more serious when compared to control and 1.5 mg/L groups.Conclusions In a mouse model of low-dose ATR liver injury,both 1.5 mg/L and 150 mg/L ATR exposure induced liver injury in mice,with 150 mg/L ATR inducing the maximum metabolic toxicity in the liver after 63 days.
8.Effect of Acacetin on Inhibition of Apoptosis in Helicobacter pylori-Infected Gastric Epithelial Cell Line GES-1
Qi-Xi YAO ; Zi-Yu LI ; Hou-Le KANG ; Xin HE ; Min KANG
Modern Interventional Diagnosis and Treatment in Gastroenterology 2024;29(3):307-311
Objective This study aims to elucidate the protective role of Acacetin against apoptosis in HP-infected GES-1 cells and to delineate its potential underlying mechanisms.Materials and Methods GES-1 cells were subjected to in vitro treatment with HP and Acacetin.Cell viability was assessed utilizing the CCK-8 assay,alterations in cell migration and healing capacities through the wound healing assay,rates of apoptosis via flow cytometry,and expression levels of apoptosis-associated proteins through western blot analysis.Results HP infection led to a diminution in GES-1 cell viability,a suppression of cell migration,an augmentation in the rate of apoptosis,and an increase in the expression levels of Bax and cle-caspase3.Conversely,treatment with Acacetin was found to enhance cell viability,mitigate apoptosis induced by HP infection,and modulate the expression of apoptosis proteins by downregulating Bax and cle-caspase3.Discussion and Conclusion Acacetin significantly improves GES-1 cell vitality and inhibits apoptosis in HP-infected GES-1 cells,thereby offering a protective effect on gastric mucosal epithelial cells.
9.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
10.Investigation of influencing factors and reference ranges for thyroid function in hospitalized preterm infants at the age of 7 days
Chinese Journal of Contemporary Pediatrics 2024;26(6):625-630
Objective To investigate the influencing factors and reference ranges for thyroid function in preterm infants at the age of 7 days,with the aim of avoiding unnecessary clinical reexamination and intervention.Methods A retrospective analysis was performed for the data of 685 preterm infants from January 2020 to January 2023.According to gestational age and birth weight,they were divided into a high-risk group(gestational age<34 weeks or birth weight<2 000 g;228 infants)and a low-risk group(gestational age≥34 weeks and birth weight≥2 000 g;457 infants).The influencing factors for thyroid function were analyzed,and 95%reference range was calculated.Results Gestational age,birth weight,birth season,sex,and assisted reproduction were the influencing factors for thyroid function(P<0.05).For the preterm infants in the high-risk group,the reference ranges of free triiodothyronine(FT3),free thyroxine(FT4),total triiodothyronine(TT3),total thyroxine(TT4),and thyroid stimulating hormone(TSH)were 2.79-5.40 pmol/L,8.80-25.64 pmol/L,0.80-2.15 nmol/L,50.06-165.09 nmol/L,and 0.80-18.57 μIU/mL,respectively.For those in the low-risk group,the reference ranges of these indicators were 3.08-5.93 pmol/L,11.17-26.24 pmol/L,1.02-2.27 nmol/L,62.90-168.95 nmol/L,and 0.69-13.70 μIU/mL,respectively.FT3,FT4,TT3,and TT4 were positively correlated with gestational age(P<0.05);FT3,FT4,TT3,and TT4 were positively correlated with birth weight(P<0.05);TSH was negatively correlated with birth weight(P<0.05).Conclusions Thyroid function in preterm infants at the age of 7 days is affected by the factors such as gestational age and birth weight,and the reference ranges of thyroid function in preterm infants at the age of 7 days should be established based on gestational age and birth weight.

Result Analysis
Print
Save
E-mail