1.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
2.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
3.A bibliometric and visual analysis of the literature published in the journal of Organ Transplantation since its inception
Xi CAO ; Tao HUANG ; Qiwei YANG ; Lin YU ; Xiaowen WANG ; Wenfeng ZHU ; Haoqi CHEN ; Ning FAN ; Genshu WANG
Organ Transplantation 2026;17(1):133-142
Objective To systematically analyze the literature characteristics of Journal of Organ Transplantation since its inception. Methods Using the China National Knowledge Infrastructure (CNKI) academic journal full-text database as the data source, all articles published in the Journal of Organ Transplantation from January 2010 to August 2025 were retrieved. After excluding non-academic papers, a total of 1 568 research papers were included. R language 4.3.0, Bibliometrix package 3.2.1, and Citespace software were used to analyze the number of publications, publishing institutions, authors, keywords and other aspects. Results The number of publications in Journal of Organ Transplantation increased from an average of 82 articles per year in the early years after its inception to 113 articles per year in recent years, a growth of 37.8%. The geographical distribution of publishing institutions covers 32 provinces, cities and autonomous regions nationwide, mainly concentrated in the South China, East China and North China regions, and has now basically covered the central and western regions in recent years. The author collaboration network includes 45 authors distributed across 7 major collaboration clusters, forming a stable multi-level national research system centered on key university-affiliated hospitals. The high-frequency keywords are dominated by "liver transplantation" (425 times) and "kidney transplantation" (396 times). The theme evolution shows a clear three-stage characteristic: initially focusing on clinical technology application, deepening to immune mechanism exploration in the middle stage, and recently (since 2022) focusing on cutting-edge research areas such as xenotransplantation. Conclusions Journal of Organ Transplantation has witnessed the rapid development of China's organ transplantation cause, fully reflecting the research status and trends in China's organ transplantation field, and has provided an important platform for the future development and international cooperation in China's organ transplantation field.
4.Cultivating “non-technical skills” in surgeons
Chinese Journal of Surgery 2025;63(1):28-31
Surgical operations are one of the high-risk activities in modern society, and surgeons in this high-pressure environment require not only excellent technical skills but also well-rounded non-technical skills. Non-technical skills encompass key abilities such as situational awareness, decision-making, communication and teamwork, leadership, and stress management, as well as the capacity for error correction feedback loops, emotional intelligence, and adaptability to complex environments. These “soft skills” help surgeons to more effectively handle emergencies during surgery, optimize team collaboration, ensure patient safety, and increase the success rate of operations. Western countries have systematized non-technical skills into physicians’ training programs, while in China, further attention and promotion are still needed. By establishing comprehensive non-technical skill assessment standards and systematic training programs, the overall quality of surgeons can be enhanced, thereby ensuring patient safety, improving clinical outcomes, and fulfilling the professional mission of surgeons.
5.Chinese Materia Medica by Regulating Nrf2 Signaling Pathway in Prevention and Treatment of Ulcerative Colitis: A Review
Yasheng DENG ; Lanhua XI ; Yanping FAN ; Wenyue LI ; Tianwei LIANG ; Hui HUANG ; Shan LI ; Xian HUANG ; Chun YAO ; Guochu HUANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):321-330
Ulcerative colitis(UC) is a chronic non-specific inflammatory bowel disease characterized by inflammation and ulceration of the colonic mucosa and submucosa, and its complex pathogenesis involves immune abnormality, oxidative stress and other factors. The nuclear transcription factor E2-related factor 2(Nrf2), encoded by the Nfe212 gene, plays a central role in antioxidant responses. It not only activates various antioxidant response elements such as heme oxygenase-1(HO-1) and quinone oxidoreductase 1(NQO1), but also enhances the activity of glutathione-S-transferase(GST) and superoxide dismutase 1(SOD1), effectively eliminating reactive oxygen species(ROS) accumulated in the body, and mitigating oxidative stress-induced damage to intestinal mucosa. In addition, Nrf2 can reduce the release of inflammatory factors and infiltration of immune cells by regulating immune response, cell apoptosis and autophagy pathways, thereby alleviating intestinal inflammation and promoting the repair and regeneration of damaged mucosa. Based on this, this paper reviews the research progress of Chinese materia medica in the prevention and treatment of UC by modulating the Nrf2 signaling pathway. It deeply explores the physiological role of Nrf2, the molecular mechanism of activation, the protective effect in the pathological process of UC, and how active ingredients in Chinese materia medica regulate the Nrf2 signaling pathway through multiple pathways to exert their potential mechanisms. These studies have revealed in depth that Chinese materia medica can effectively combat oxidative stress by regulating the Nrf2 signaling pathway. It can also play a role in anti-inflammatory, promoting autophagy, inhibiting apoptosis, protecting the intestinal mucosal barrier, and promoting intestinal mucosal repair, providing new ideas and methods for the multi-faceted treatment of UC.
6.Research progress on the effects of different myopia prevention and control methods on choroid
Shangzhu ZHANG ; Jiawei WANG ; Ruijie XI ; Song CHAI
International Eye Science 2025;25(1):70-75
In recent years, there has been a significant surge in the prevalence of myopia at younger ages in China. Numerous studies have investigated methods for preventing and controlling myopia, including orthokeratology, low-concentration atropine eye drops, light therapy, posterior scleral reinforcement, and traditional Chinese medicine. These approaches can modulate choroidal thickness, blood flow, and target various molecular mechanisms. Orthokeratology and low-concentration atropine demonstrate a thickening effect on the choroid and regulate choroidal blood flow; the use of multi-point defocus control lenses also shows promise in thickening the choroid; the influence of light and light feeding therapy on myopia prevention and control is also reflected in the choroidal thickness and blood flow; and the traditional Chinese medicine has shown good prospect in influencing the microstructure of the choroid for myopia prevention and control. However, the long-term effects of various prevention and control measures on the choroid still need to be explored with a large sample size. This article provides an overview of various methods used to regulate the choroid and prevent myopia. The mechanisms by which these interventions act on the choroid are described to provide new insights and identity novel clinical strategies for myopia management.
7.Effect of Rhei Radix et Rhizoma Before and After Steaming with Wine on Intestinal Flora and Immune Environment in Constipation Model Mice
Yaya BAI ; Rui TIAN ; Yajun SHI ; Chongbo ZHAO ; Jing SUN ; Li ZHANG ; Yonggang YAN ; Yuping TANG ; Qiao ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):192-199
ObjectiveTo study on the different therapeutic effects and potential mechanisms of Rhei Radix et Rhizoma(RH) before and after steaming with wine on constipation model mice. MethodsFifty-four male ICR mice were randomly divided into control group, model group, lactulose group(1.5 mg·kg-1), high, medium and low dose groups of RH and RH steaming with wine(PRH)(8, 4, 1 g·kg-1). Except for the control group, the constipation model was replicated by gavage of loperamide hydrochloride(6 mg·kg-1) in the other groups. After 2 weeks of modeling, each administration group was gavaged with the corresponding dose of drug solution, and the control and model groups were given an equal volume of normal saline, 1 time/d for 2 consecutive weeks. After administration, the feces were collected for 16S rRNA sequencing, the levels of gastrin(GAS), motilin(MTL), interleukin-6(IL-6), γ-interferon(IFN-γ) in the colonic tissue were detected by enzyme-linked immunosorbent assay(ELISA), the histopathological changes of colon were observed by hematoxylin-eosin(HE) staining, flow cytometry was used to detect the proportion changes of CD4+, CD8+ and regulatory T cell(Treg) in peripheral blood. ResultsCompared with the control group, the model group showed significantly decrease in fecal number in 24 h, fecal quality and fecal water rate(P<0.01), the colon was seen to have necrotic shedding of mucosal epithelium, localized intestinal glands in the lamina propria were degenerated, necrotic and atrophied, a few lymphocytes were seen to infiltrate in the necrotic area in a scattered manner, the contents of GAS and MTL, the proportions of CD4+, CD8+ and Treg were significantly reduced(P<0.01), the contents of IL-6 and IFN-γ were significantly elevated(P<0.05, P<0.01). Compared with the model group, the fecal number in 24 h, fecal quality and fecal water rate of high-dose groups of RH and PRH were significantly increased(P<0.05, P<0.01), the pathological damage of the colon was alleviated to varying degrees, the contents of GAS, MTL, IL-6 and IFN-γ were significantly regressed(P<0.05, P<0.01), and the proportions of CD4+ and CD8+ were significantly increased(P<0.01), although the proportion of Treg showed an upward trend, there was no significant difference. In addition, the results of intestinal flora showed that the number of amplicon sequence variant(ASV) and Alpha diversity were decreased in the model group compared with the control group, and there was a significant difference in Beta diversity, with a decrease in the relative abundance of Lactobacillus and an increase in the relative abundances of Bacillus and Helicobacter. Compared with the model group, the ASV number and Alpha diversity were increased in the high-dose groups of RH and PRH, and there was a trend of regression of Beta diversity to the control group, the relative abundance of Lactobacillus increased, and the relative abundances of Bacillus and Helicobacter decreased. ConclusionRH and PRH can improve dysbacteriosis, promote immune system activation, inhibit the release of inflammatory factors for enhancing the gastrointestinal function, which may be one of the potential mechanisms of their therapeutic effect on constipation.
8.Knowledge map and visualization analysis of pulmonary nodule/early-stage lung cancer prediction models
Yifeng REN ; Qiong MA ; Hua JIANG ; Xi FU ; Xueke LI ; Wei SHI ; Fengming YOU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):100-107
Objective To reveal the scientific output and trends in pulmonary nodules/early-stage lung cancer prediction models. Methods Publications on predictive models of pulmonary nodules/early lung cancer between January 1, 2002 and June 3, 2023 were retrieved and extracted from CNKI, Wanfang, VIP and Web of Science database. CiteSpace 6.1.R3 and VOSviewer 1.6.18 were used to analyze the hotspots and theme trends. Results A marked increase in the number of publications related to pulmonary nodules/early-stage lung cancer prediction models was observed. A total of 12581 authors from 2711 institutions in 64 countries/regions published 2139 documents in 566 academic journals in English. A total of 282 articles from 1256 authors were published in 176 journals in Chinese. The Chinese and English journals which published the most pulmonary nodules/early-stage lung cancer prediction model-related papers were Journal of Clinical Radiology and Frontiers in Oncology, respectively. Chest was the most frequently cited journal. China and the United States were the leading countries in the field of pulmonary nodules/early-stage lung cancer prediction models. The institutions represented by Fudan University had significant academic influence in the field. Analysis of keywords revealed that multi-omics, nomogram, machine learning and artificial intelligence were the current focus of research. Conclusion Over the last two decades, research on risk-prediction models for pulmonary nodules/early-stage lung cancer has attracted increasing attention. Prognosis, machine learning, artificial intelligence, nomogram, and multi-omics technologies are both current hotspots and future trends in this field. In the future, in-depth explorations using different omics should increase the sensitivity and accuracy of pulmonary nodules/early-stage lung cancer prediction models. More high-quality future studies should be conducted to validate the efficacy and safety of pulmonary nodules/early-stage lung cancer prediction models further and reduce the global burden of lung cancer.
9.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
10.Recognition of breath odor map of benign and malignant pulmonary nodules and Traditional Chinese Medicine syndrome elements based on electronic nose combined with machine learning: An observational study in a single center
Shiyan TAN ; Qiong ZENG ; Hongxia XIANG ; Qian WANG ; Xi FU ; Jiawei HE ; Liting YOU ; Qiong MA ; Fengming YOU ; Yifeng REN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):185-193
Objective To explore the recognition capabilities of electronic nose combined with machine learning in identifying the breath odor map of benign and malignant pulmonary nodules and Traditional Chinese Medicine (TCM) syndrome elements. Methods The study design was a single-center observational study. General data and four diagnostic information were collected from 108 patients with pulmonary nodules admitted to the Department of Cardiothoracic Surgery of Hospital of Chengdu University of TCM from April 2023 to March 2024. The patients' TCM disease location and nature distribution characteristics were analyzed using the syndrome differentiation method. The Cyranose 320 electronic nose was used to collect the odor profiles of oral exhalation, and five machine learning algorithms including random forest (RF), K-nearest neighbor (KNN), logistic regression (LR), support vector machine (SVM), and eXtreme gradient boosting (XGBoost) were employed to identify the exhaled breath profiles of benign and malignant pulmonary nodules and different TCM syndromes. Results (1) The common disease locations in pulmonary nodules were ranked in descending order as liver, lung, and kidney; the common disease natures were ranked in descending order as Yin deficiency, phlegm, dampness, Qi stagnation, and blood deficiency. (2) The electronic nose combined with the RF algorithm had the best efficacy in identifying the exhaled breath profiles of benign and malignant pulmonary nodules, with an AUC of 0.91, accuracy of 86.36%, specificity of 75.00%, and sensitivity of 92.85%. (3) The electronic nose combined with RF, LR, or XGBoost algorithms could effectively identify the different TCM disease locations and natures of pulmonary nodules, with classification accuracy, specificity, and sensitivity generally exceeding 80.00%.Conclusion Electronic nose combined with machine learning not only has the potential capabilities to differentiate the benign and malignant pulmonary nodules, but also provides new technologies and methods for the objective diagnosis of TCM syndromes in pulmonary nodules.

Result Analysis
Print
Save
E-mail