1.Novel CD19 Fast-CAR-T cells vs. CD19 conventional CAR-T cells for the treatment of relapsed/refractory CD19-positive B-cell acute lymphoblastic leukemia.
Xu TAN ; Jishi WANG ; Shangjun CHEN ; Li LIU ; Yuhua LI ; Sanfang TU ; Hai YI ; Jian ZHOU ; Sanbin WANG ; Ligen LIU ; Jian GE ; Yongxian HU ; Xiaoqi WANG ; Lu WANG ; Guo CHEN ; Han YAO ; Cheng ZHANG ; Xi ZHANG
Chinese Medical Journal 2025;138(19):2491-2497
BACKGROUND:
Treatment with chimeric antigen receptor-T (CAR-T) cells has shown promising effectiveness in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL), although the process of preparing for this therapy usually takes a long time. We have recently created CD19 Fast-CAR-T (F-CAR-T) cells, which can be produced within a single day. The objective of this study was to evaluate and contrast the effectiveness and safety of CD19 F-CAR-T cells with those of CD19 conventional CAR-T cells in the management of R/R B-ALL.
METHODS:
A multicenter, retrospective analysis of the clinical data of 44 patients with R/R B-ALL was conducted. Overall, 23 patients were administered with innovative CD19 F-CAR-T cells (F-CAR-T group), whereas 21 patients were given CD19 conventional CAR-T cells (C-CAR-T group). We compared the rates of complete remission (CR), minimal residual disease (MRD)-negative CR, leukemia-free survival (LFS), overall survival (OS), and the incidence of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) between the two groups.
RESULTS:
Compared with the C-CAR-T group, the F-CAR-T group had significantly higher CR and MRD-negative rates (95.7% and 91.3%, respectively; 71.4% and 66.7%, respectively; P = 0.036 and P = 0.044). No significant differences were observed in the 1-year or 2-year LFS or OS rates between the two groups: the 1-year and 2-year LFS for the F-CAR-T group vs.C-CAR-T group were 47.8% and 43.5% vs. 38.1% and 23.8% (P = 0.384 and P = 0.216), while the 1-year and 2-year OS rates were 65.2% and 56.5% vs. 52.4% and 47.6% (P = 0.395 and P = 0.540). Additionally, among CR patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) following CAR-T-cell therapy, there were no significant differences in the 1-year or 2-year LFS or OS rates: 57.1% and 50.0% vs. 47.8% and 34.8% (P = 0.506 and P = 0.356), 64.3% and 57.1% vs. 65.2% and 56.5% (P = 0.985 and P = 0.883), respectively. The incidence of CRS was greater in the F-CAR-T group (91.3%) than in the C-CAR-T group (66.7%) (P = 0.044). The incidence of ICANS was also greater in the F-CAR-T group (30.4%) than in the C-CAR-T group (9.5%) (P = 0.085), but no treatment-related deaths occurred in the two groups.
CONCLUSION
Compared with C-CAR-T-cell therapy, F-CAR-T-cell therapy has a superior remission rate but also leads to a tolerably increased incidence of CRS/ICANS. Further research is needed to explore the function of allo-HSCT as an intermediary therapy after CAR-T-cell therapy.
2.Mechanism of icariin in promoting osteogenic differentiation of BMSCs and improving bone metabolism disorders through caveolin-1/Hippo signaling pathway.
Yi-Dan HAN ; Hai-Feng ZHANG ; Yun-Teng XU ; Yu-Huan ZHONG ; Xiao-Ning WANG ; Yun YU ; Yuan-Li YAN ; Shan-Shan WANG ; Xi-Hai LI
China Journal of Chinese Materia Medica 2025;50(3):600-608
Guided by the theory of "the kidney storing essence, governing the bones, and producing marrow", this study explored the mechanism of icariin(ICA) in regulating the osteogenic differentiation of rat bone mesenchymal stem cells(BMSCs) through caveolin-1(Cav1) via in vitro and in vivo experiments, aiming to provide a theoretical basis for the prevention and treatment of postmenopausal osteoporosis with traditional Chinese medicine(TCM). Primary cells were obtained from 4-week-old female SD rats using the whole bone marrow adherent method. Flow cytometry was used to detect the expression of surface markers CD29, CD90, CD11b, and CD45. The potential for osteogenic and adipogenic differentiation was assessed. The effect of ICA on cell viability was determined using the CCK-8 assay, and the impact of ICA on the formation of mineralized nodules was verified by alizarin red staining. A stable Cav1-silenced cell line was constructed using lentivirus. The effect of Cav1 silencing on osteogenic differentiation was observed via alizarin red staining. Western blot analysis was conducted to detect the expression of Cav1, Hippo/TAZ, and osteogenic markers such as Runt-related transcription factor 2(RUNX2) and alkaline phosphatase(ALP). The results showed that primary cells were successfully obtained using the whole bone marrow adherent method, positively expressing surface markers of rat BMSCs and possessing the potential for both osteogenic and adipogenic differentiation. The CCK-8 assay and alizarin red staining results indicated that 1×10~(-7) mol·L~(-1) was the optimal concentration of ICA for intervention in this experiment(P<0.05). During osteogenic induction, ICA inhibited Cav1 expression(P<0.05) while promoting TAZ expression(P<0.05). Alizarin red staining demonstrated that Cav1 silencing significantly promoted the osteogenic differentiation of BMSCs. After ICA intervention, TAZ expression was activated, and the expression of osteogenic markers ALP and RUNX2 was increased. In conclusion, Cav1 silencing significantly promotes the osteogenic differentiation of BMSCs, and ICA promotes this differentiation by inhibiting Cav1 and regulating the Hippo/TAZ signaling pathway.
Animals
;
Mesenchymal Stem Cells/metabolism*
;
Caveolin 1/genetics*
;
Osteogenesis/drug effects*
;
Rats, Sprague-Dawley
;
Rats
;
Cell Differentiation/drug effects*
;
Female
;
Signal Transduction/drug effects*
;
Flavonoids/administration & dosage*
;
Protein Serine-Threonine Kinases/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Cells, Cultured
;
Humans
3.Regulation of JAK2/STAT3 signaling pathway by polydatin in the treatment of hormone-induced femoral head necrosis in rats.
Xiang-Jun YANG ; Cong-Yue WANG ; Xi-Lin XU ; Hai HU ; Yi-Wei SHEN ; Xiao-Feng ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(2):195-203
OBJECTIVE:
To explore the therapeutic effect of polygonum cuspidatum glycoside on steroid-induced osteonecrosis of the femoral head(SONFH) in rats and its potential mechanism of protecting bone tissue by regulating the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway(JAK2/STAT3).
METHODS:
Fifty male SD rats were randomly divided into control group, model group, low-dose polygonum cuspidatum glycoside group (polygonum cuspidatum glycoside-L), high-dose polygonum cuspidatum glycoside group (polygonum cuspidatum glycoside-H), and polygonum cuspidatum glycoside-H+Colivelin (JAK2/STAT3 pathway activator) group. SONFH model was induced by lipopolysaccharide and dexamethasone. The treatment groups were given polygonum cuspidatum glycoside orally(polygonum cuspidatum glycoside-L 10 mg·kg-1, polygonum cuspidatum glycoside-H 20 mg·kg-1, and the polygonum cuspidatum glycoside-H+Colivelin group was injected with Colivelin (1 mg·kg-1) intraperitoneally once a day, while the control and model groups were given an equal volume of saline for 6 weeks. The observed indicators included serum calcium(Ca), serum phosphorus (P), alkaline phosphatase, and transforming growth factor β1(TGF-β1) levels, micro-CT scanning, hematoxylin-eosin staining, and Western blot detection of JAK2/STAT3 signaling pathway and osteogenic differentiation marker genes, including Runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (BMP2), and osteopontin (OPN) protein expression.
RESULTS:
Compared with the model group, the trabecular bone area percentage in the polygonum cuspidatum glycoside-L and polygonum cuspidatum glycoside-H groups was significantly increased, and the empty lacunar rate was significantly decreased (P<0.05). Micro-CT analysis showed that the bone volume fraction, trabecular number, and thickness increased, and the trabecular separation decreased in the polygonum cuspidatum glycoside-treated groups(P<0.05). Serum biochemical tests found that the serum Ca and P concentrations in the polygonum cuspidatum glycoside-L and polygonum cuspidatum glycoside-H groups were restored, the alkaline phosphatase levels decreased, and the transforming growth factor β1 levels increased (P<0.05). Western blot analysis showed that polygonum cuspidatum glycoside significantly inhibited the activation of the JAK2/STAT3 signaling pathway in the model group and promoted the expression of osteogenic differentiation marker genes such as Runx2, BMP2, and OPN (P<0.05). Compared with the polygonum cuspidatum glycoside-H group, the improvements in the polygonum cuspidatum glycoside-H+Colivelin group were somewhat weakened, indicating the importance of the JAK2/STAT3 signaling pathway in the action of polygonum cuspidatum glycoside.
CONCLUSION
polygonum cuspidatum glycoside promotes osteogenic differentiation, improves bone microstructure, and has significant therapeutic effects on rat SONFH by regulating the JAK2/STAT3 signaling pathway.
Animals
;
Male
;
Janus Kinase 2/physiology*
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Glucosides/pharmacology*
;
STAT3 Transcription Factor/genetics*
;
Femur Head Necrosis/chemically induced*
;
Stilbenes/pharmacology*
5.The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-in Mice.
Jiabin FENG ; Xiaojun WANG ; Meidie PAN ; Chen-Xi LI ; Zhe ZHANG ; Meng SUN ; Tailin LIAO ; Ziyi WANG ; Jianhong LUO ; Lei SHI ; Yu-Jing CHEN ; Hai-Feng LI ; Junyu XU
Neuroscience Bulletin 2025;41(1):77-92
Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.
Animals
;
Prefrontal Cortex/metabolism*
;
Basolateral Nuclear Complex/metabolism*
;
Mice
;
Anxiety/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Male
;
Gene Knock-In Techniques
;
Pyramidal Cells/physiology*
;
Mice, Transgenic
;
Neural Pathways/physiopathology*
;
Mice, Inbred C57BL
;
Microfilament Proteins
6.Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione.
Fu'an XIE ; Yujia NIU ; Xiaobing CHEN ; Xu KONG ; Guangting YAN ; Aobo ZHUANG ; Xi LI ; Lanlan LIAN ; Dongmei QIN ; Quan ZHANG ; Ruyi ZHANG ; Kunrong YANG ; Xiaogang XIA ; Kun CHEN ; Mengmeng XIAO ; Chunkang YANG ; Ting WU ; Ye SHEN ; Chundong YU ; Chenghua LUO ; Shu-Hai LIN ; Wengang LI
Journal of Pharmaceutical Analysis 2025;15(1):101068-101068
Ursodeoxycholic acid (UDCA) is a naturally occurring, low-toxicity, and hydrophilic bile acid (BA) in the human body that is converted by intestinal flora using primary BA. Solute carrier family 7 member 11 (SLC7A11) functions to uptake extracellular cystine in exchange for glutamate, and is highly expressed in a variety of human cancers. Retroperitoneal liposarcoma (RLPS) refers to liposarcoma originating from the retroperitoneal area. Lipidomics analysis revealed that UDCA was one of the most significantly downregulated metabolites in sera of RLPS patients compared with healthy subjects. The augmentation of UDCA concentration (≥25 μg/mL) demonstrated a suppressive effect on the proliferation of liposarcoma cells. [15N2]-cystine and [13C5]-glutamine isotope tracing revealed that UDCA impairs cystine uptake and glutathione (GSH) synthesis. Mechanistically, UDCA binds to the cystine transporter SLC7A11 to inhibit cystine uptake and impair GSH de novo synthesis, leading to reactive oxygen species (ROS) accumulation and mitochondrial oxidative damage. Furthermore, UDCA can promote the anti-cancer effects of ferroptosis inducers (Erastin, RSL3), the murine double minute 2 (MDM2) inhibitors (Nutlin 3a, RG7112), cyclin dependent kinase 4 (CDK4) inhibitor (Abemaciclib), and glutaminase inhibitor (CB839). Together, UDCA functions as a cystine exchange factor that binds to SLC7A11 for antitumor activity, and SLC7A11 is not only a new transporter for BA but also a clinically applicable target for UDCA. More importantly, in combination with other antitumor chemotherapy or physiotherapy treatments, UDCA may provide effective and promising treatment strategies for RLPS or other types of tumors in a ROS-dependent manner.
7.Advances in mesenchymal stem cells therapy for tendinopathies
Xu-Feng MAO ; Xi-Qian ZHANG ; Zhe-Yu YAO ; Hai-Jiao MAO
Chinese Journal of Traumatology 2024;27(1):11-17
Tendinopathies are chronic diseases of an unknown etiology and associated with inflammation. Mesenchymal stem cells (MSCs) have emerged as a viable therapeutic option to combat the pathological progression of tendinopathies, not only because of their potential for multidirectional differentiation and self-renewal, but also their excellent immunomodulatory properties. The immunomodulatory effects of MSCs are increasingly being recognized as playing a crucial role in the treatment of tendinopathies, with MSCs being pivotal in regulating the inflammatory microenvironment by modulating the immune response, ultimately contributing to improved tissue repair. This review will discuss the current knowledge regarding the application of MSCs in tendinopathy treatments through the modulation of the immune response.
8.Mannitol inhibits the proliferation of neural stem cell by a p38 mitogen-activated protein kinase-dependent signaling pathway
Hai-Zhen DUAN ; Xin ZHOU ; Quan HU ; Meng-Long LIU ; Shu-Hong WANG ; Ji ZHANG ; Xu-Heng JIANG ; Tian-Xi ZHANG ; An-Yong YU
Chinese Journal of Traumatology 2024;27(1):42-52
Purpose::Mannitol is one of the first-line drugs for reducing cerebral edema through increasing the extracellular osmotic pressure. However, long-term administration of mannitol in the treatment of cerebral edema triggers damage to neurons and astrocytes. Given that neural stem cell (NSC) is a subpopulation of main regenerative cells in the central nervous system after injury, the effect of mannitol on NSC is still elusive. The present study aims to elucidate the role of mannitol in NSC proliferation.Methods::C57 mice were derived from the animal house of Zunyi Medical University. A total of 15 pregnant mice were employed for the purpose of isolating NSCs in this investigation. Initially, mouse primary NSCs were isolated from the embryonic cortex of mice and subsequently identified through immunofluorescence staining. In order to investigate the impact of mannitol on NSC proliferation, both cell counting kit-8 assays and neurospheres formation assays were conducted. The in vitro effects of mannitol were examined at various doses and time points. In order to elucidate the role of Aquaporin 4 (AQP4) in the suppressive effect of mannitol on NSC proliferation, various assays including reverse transcription polymerase chain reaction, western blotting, and immunocytochemistry were conducted on control and mannitol-treated groups. Additionally, the phosphorylated p38 (p-p38) was examined to explore the potential mechanism underlying the inhibitory effect of mannitol on NSC proliferation. Finally, to further confirm the involvement of the p38 mitogen-activated protein kinase-dependent (MAPK) signaling pathway in the observed inhibition of NSC proliferation by mannitol, SB203580 was employed. All data were analyzed using SPSS 20.0 software (SPSS, Inc., Chicago, IL). The statistical analysis among multiple comparisons was performed using one-way analysis of variance (ANOVA), followed by Turkey's post hoc test in case of the data following a normal distribution using a Shapiro-Wilk normality test. Comparisons between 2 groups were determined using Student's t-test, if the data exhibited a normal distribution using a Shapiro-Wilk normality test. Meanwhile, data were shown as median and interquartile range and analyzed using the Mann-Whitney U test, if the data failed the normality test. A p < 0.05 was considered as significant difference. Results::Primary NSC were isolated from the mice, and the characteristics were identified using immunostaining analysis. Thereafter, the results indicated that mannitol held the capability of inhibiting NSC proliferation in a dose-dependent and time-dependent manner using cell counting kit-8, neurospheres formation, and immunostaining of Nestin and Ki67 assays. During the process of mannitol suppressing NSC proliferation, the expression of AQP4 mRNA and protein was downregulated, while the gene expression of p-p38 was elevated by reverse transcription polymerase chain reaction, immunostaining, and western blotting assays. Subsequently, the administration of SB203580, one of the p38 MAPK signaling pathway inhibitors, partially abrogated this inhibitory effect resulting from mannitol, supporting the fact that the p38 MAPK signaling pathway participated in curbing NSC proliferation induced by mannitol.Conclusions::Mannitol inhibits NSC proliferation through downregulating AQP4, while upregulating the expression of p-p38 MAPK.
9.Mechanisms of resistance to ceftazidime/avibactam of carbapenem-resis-tant Klebsiella pneumoniae
Xi-Yuan CHEN ; Zi-Ling WANG ; Shuang SONG ; Bo-Yin XU ; Jing-Fang SUN ; Shu-Long ZHAO ; Hai-Quan KANG
Chinese Journal of Infection Control 2024;23(11):1365-1372
Objective To explore the molecular epidemiological characteristics of carbapenem-resistant Klebsiella pneumoniae(CRKP),and reveal its mechanism of resistance to ceftazidime/avibactam(CZA).Methods CZA-re-sistant CRKP strains initially isolated from the Affiliated Hospital of Xuzhou Medical University from January 2021 to September 2023 were collected.The carriage of 5 carbapenemase genes(blaKPC,blaNDM,blaOXA,blaVIM,blaIMp)were detected with gene amplification method and colloidal gold method.The relative copy number and expression level of Klebsiella pneumoniae(KP)carbapenemase-producing KP(KPC-KP)was detected with real-time quantita-tive polymerase chain reaction(RT-qPCR),mutation sites of KPC mutation strains were analyzed with whole-ge-nome sequencing,and epidemic characteristics of CRKP and resistance mechanism to CZA were analyzed.Results A total of 73 CZA-resistant CRKP strains were isolated,with 37(50.68%)being KPC and NDM co-producing strains,33(45.21%)NDM-producing alone(23 strains producing NDM-5 and 10 strains producing NDM-1),and 3 KPC-producing alone.KP-2842 strain was identified as ST11-type KPC-33 variant,KP-2127 and KP-2189 strains produced KPC-2.Compared with KP ATCC BAA-1705,the copy number of blaKPC in these strains up-regulated by 1.04-3.86 fold,and the expression increased by 6.66-12.93 fold,respectively.Colloidal gold and PCR methods demonstrated good consistency and the ability to detect the enzyme co-producing and KPC-33 variant.Conclusion In this hospital,the resistance of CRKP to CZA is primarily mediated by the metalloenzyme NDM,with co-produc-tion of NDM and KPC being a characteristic of CRKP.High copy number and expression level of blaKPC-2 also con-tribute to CZA resistance.This study identified the KPC-33 variant for the first time in ST11-type CRKP in Jiangsu Province.

Result Analysis
Print
Save
E-mail