1.Advances in the role of protein post-translational modifications in circadian rhythm regulation.
Zi-Di ZHAO ; Qi-Miao HU ; Zi-Yi YANG ; Peng-Cheng SUN ; Bo-Wen JING ; Rong-Xi MAN ; Yuan XU ; Ru-Yu YAN ; Si-Yao QU ; Jian-Fei PEI
Acta Physiologica Sinica 2025;77(4):605-626
The circadian clock plays a critical role in regulating various physiological processes, including gene expression, metabolic regulation, immune response, and the sleep-wake cycle in living organisms. Post-translational modifications (PTMs) are crucial regulatory mechanisms to maintain the precise oscillation of the circadian clock. By modulating the stability, activity, cell localization and protein-protein interactions of core clock proteins, PTMs enable these proteins to respond dynamically to environmental and intracellular changes, thereby sustaining the periodic oscillations of the circadian clock. Different types of PTMs exert their effects through distincting molecular mechanisms, collectively ensuring the proper function of the circadian system. This review systematically summarized several major types of PTMs, including phosphorylation, acetylation, ubiquitination, SUMOylation and oxidative modification, and overviewed their roles in regulating the core clock proteins and the associated pathways, with the goals of providing a theoretical foundation for the deeper understanding of clock mechanisms and the treatment of diseases associated with circadian disruption.
Protein Processing, Post-Translational/physiology*
;
Circadian Rhythm/physiology*
;
Humans
;
Animals
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Phosphorylation
;
Acetylation
;
Ubiquitination
;
Sumoylation
2.Evaluation of potential suitable habitats for Gastrodia elata in China under future climate and land use change scenarios.
Hua-Qian GONG ; Xu-Dong GUO ; Shao-Yang XI ; Gong-Han TU ; Fei CHEN ; Ling JIN
China Journal of Chinese Materia Medica 2025;50(14):3887-3897
Climate and land use changes may significantly impact the habitat distribution of Gastrodia elata, an endangered traditional medicinal plant. Accurately predicting its future potential suitable habitats is crucial for its conservation and sustainable development. This study integrates current distribution data of G. elata with 56 environmental variables and uses the MaxEnt model to predict changes in its suitable habitats under current climate conditions and four future climate scenarios(SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The results show that October precipitation and December minimum temperature are key environmental factors influencing its distribution. Under the current climate, optimal habitats for G. elata are concentrated in montane forest areas in Sichuan, Yunnan, Guizhou, and Hubei, which meet the species' requirements for understory growth. Across all future scenarios, the suitable habitat of G. elata consistently shows a stable northward shift, with a steady increase in suitable areas, extending to the middle and lower reaches of the Yangtze River and the Huang-Huai region, and even expanding into Liaoning, Jilin, and southern Heilongjiang. Land use analysis, taking into account the protection of arable land and the utilization of forest resources, indicates that by 2100, under future climate conditions, arable land in medium-to high-suitability areas is expected to increase by 30%-124%. While the conversion of non-suitable forest land into suitable habitats is projected to increase by 5%-52%, the growth of medium-to high-suitability areas within forests is relatively modest, ranging from 1% to 24%. These findings highlight the need to balance agricultural expansion with forest resource conservation to ensure the long-term sustainability of G. elata and provide scientific guidance for future suitable habitat management.
Ecosystem
;
China
;
Climate Change
;
Gastrodia/growth & development*
;
Conservation of Natural Resources
;
Plants, Medicinal/growth & development*
3.Identification of Rare 3.5 kb Deletion in the β-Globin Gene Cluster.
Yun-Hua FAN ; Cui-Lin DUAN ; Sai-Li LUO ; Shi-Jun GE ; Chong-Fei YU ; Jue-Min XI ; Jia-You CHU ; Zhao-Qing YANG
Journal of Experimental Hematology 2025;33(1):175-179
OBJECTIVE:
To identify the gene mutation types of 4 suspected β-thalassemia patients in Yunnan Province, and to analyze the genotypes and hematological phenotypes.
METHODS:
Whole genome sequencing was performed on the samples of 4 suspected β-thalassemia patients from the Dai ethnic group in a thalassemia endemic area of Yunnan Province, whose hematological phenotypes were not consistent with the results of common thalassemia gene mutations. The mutations of β-globin gene clusters were confirmed by polymerase chain reaction (PCR) and Sanger DNA sequencing technology.
RESULTS:
The 3.5 kb deletion in β-globin gene cluster (NC_000011.10: g. 5224302-5227791del3490bp) was detected in 4 patients' samples, of which 1 case was also detected with HbE mutation and 1 case with CD17 mutation. These 2 patients displayed moderate anemia phenotype, while the two patients with only the 3.5 kb deletion presented with other mild anemia phenotype.
CONCLUSION
Heterozygous carriers with rare 3.5 kb deletion of the β-globin gene cluster may develop mild anemia, compound mutations of the 3.5 kb deletion with other mutations may led to intermediate thalasemia with moderate to sever anemia. In areas with a high incidence of thalassemia, suspected patients should undergo genetic testing to avoid missing or misdiagnosing rare mutations.
Humans
;
beta-Globins/genetics*
;
Multigene Family
;
beta-Thalassemia/genetics*
;
Mutation
;
Genotype
;
Sequence Deletion
;
Phenotype
;
Male
;
Female
4.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
5.NFKBIE: Novel Biomarkers for Diagnosis, Prognosis, and Immunity in Colorectal Cancer: Insights from Pan-cancer Analysis.
Chen Yang HOU ; Peng WANG ; Feng Xu YAN ; Yan Yan BO ; Zhen Peng ZHU ; Xi Ran WANG ; Shan LIU ; Dan Dan XU ; Jia Jia XIAO ; Jun XUE ; Fei GUO ; Qing Xue MENG ; Ren Sen RAN ; Wei Zheng LIANG
Biomedical and Environmental Sciences 2025;38(10):1320-1325
6.Research status of bilastine in dermatosis
Pei-Pei XI ; Ling LU ; Peng-Fei YANG ; Ting-Bao LI
The Chinese Journal of Clinical Pharmacology 2024;40(15):2288-2291
Bilastine,a new second-generation histamine H1 receptor antagonist,is used in the treatment of urticaria,in psoriasis,eczema,atopic dermatitis,prurigo,pruritus,eosinophilic dermatitis and many other skin diseases are also widely used.This article reviews the pharmacology,pharmacokinetics,safety and efficacy of bilastine,its application in skin diseases and adverse drug reactions for clinical reference.
7.Prediction and identification of B-cell epitopes of SARS-CoV-2 E protein
Peng-Fei ZHANG ; Jun LIU ; Zi-Yang ZOU ; Xi-Long KANG ; Li SONG ; Xin-An JIAO ; Chuang MENG ; Zhi-Ming PAN
Chinese Journal of Zoonoses 2024;40(9):807-813
This work was aimed at predicting and verifying B-cell epitopes of SARS-CoV-2 E protein through bioinformatics methods,and clarifying the dominant B cell epitopes with mouse polyclonal antibody serum prepared through SARS-CoV-2 re-combinant E protein immunization and human positive serum vaccinated with inactivated SARS-CoV-2 vaccine.The structural and B-cell linear epitopes of SARS-CoV-2 E protein were predicted with SOPMA,Expasy,SWISS-MODEL,IEDB database,and Bepid-2.0 software.Candidate epitopes were expressed as GST-tagged recombinant protein fragments in an E.coli sys-tem,and their immunoreactivity with mouse and human poly-clonal positive serum against SARS-CoV-2 E protein was de-tected by western blotting and indirect ELISA,respectively.The epitope prediction results showed that E protein contained linear B cell epitopes Ser6-Val14 and Tyr57-Pro71,and the conformational epitopes of Glu8-Val12,Leu39-Tyr59,and Ser60-Leu65.The GST tagged recombinant E protein fragments of E1 and E3,containing Ser6-Val14 and Tyr57-Pro71 epitopes,respectively,as well as E2 without an epitope sequence as a control,were expressed in an E.coli expression system and successfully purified with an Ni-NTA column.Western blotting and indirect ELISA analysis indicated that all mouse and human SARS-CoV-2 positive sera positively reacted with only E1 and E3 proteins,but negatively reacted with E2 protein,thus indicating that the corresponding epitope prediction with Ser6-Val14 and Tyr57-Pro71 was correct.This study successfully predicted and preliminarily identified two linear B cell epitopes of SARS-CoV-2 E protein,thus providing a reference for the preparation of new coronavirus vaccines and the analysis of immune response characteristics.
8.MTHFD2 Is a Negative Regulatory Molecule for the Formation of Heterotypic Cell-in-Cell Structures
Peng-Fei FENG ; Chen-Yu LIU ; Yi-Nuo HUANG ; Zhuo-Ran SUN ; Yang-Yi ZHANG ; Hong-Yan HUANG ; Chen-Xi WANG ; Xiao-Ning WANG
Chinese Journal of Biochemistry and Molecular Biology 2024;40(6):819-826
Heterotypic cell-in-cell structures(heCICs)mediate unique non-autonomous cell death,which are widely involved in a variety of important pathological processes,such as tumorigenesis,pro-gression and clinical prognosis.Methylenetetrahydrofolata dehydrogenase 2(MTHFD2),one of the key enzymes of one-carbon metabolism,is highly expressed in a variety of tumor cells.In this study,in order to investigate the effect of MTHFD2 on the formation of heCICs,liver cancer cells and immune cells were first labeled separately by live cell dyes,and the heCIC model was established by using fluorescence mi-croscopy for cell imaging and analysis.After transiently knocking down MTHFD2 in cells by RNAi,we found that the ability of PLC/PRF/5 and Hep3B to form heCICs with immune cells was significantly in-creased(all P<0.01).MTHFD2 recombinant expression plasmid was constructed by the homologous re-combination method,and MTHFD2 overexpression cell lines were further constructed.Then,the effect of MTHFD2 overexpression on the ability to form heCICs was detected by co-culturing the overexpression cell lines with immune cells.The results showed that the rate of heCIC formation was significantly re-duced after overexpression of MTHFD2(all P<0.001).In conclusion,this study demonstrated that MTHFD2 is a negative regulator of heCIC formation,providing a research basis for targeting MTHFD2 to promote heCIC formation and enhance the in-cell killing of immune cells.
9.Analysis of RhC Antigen Weak Expression Combined with Mimicking Autoanti-Ce and Homologous Anti-Jkb Causing Mismatch
Hong-Mei YANG ; Xi YU ; Xin ZOU ; Si-Fei MA ; Jin CHEN ; Jian-Wei ZHANG
Journal of Experimental Hematology 2024;32(5):1539-1544
Objective:To investigate the reasons for the weak expression of RHCE gene in a patient whose mimicking anti-Ce combined with anti-Jkb caused cross-matching non-combination.Methods:ABO,Rh,and Kidd blood group antigens were identified by test tube method and capillary centrifugation.Antibody screening and antibody specificity identification were performed using saline,polybrene and antiglobulin in tri-media association with multispectral cells.RHCE gene sequencing and haploid analysis were performed by multiplex PCR technique and RHCE protein modeling was performed using Swiss-Model.Results:The serum of the patient contained anti-Ce mimicking autoantibodies along with anti-Jkb antibodies.c.48G>C,c.150C>T,c.178C>A,c.201A>G,c.203A>G,and c.307C>T mutations were detected in the RHCE triple-molecule sequencing.A 109 bp insertion sequence was found in intron 2,with fragment loss from intron 5-8.The Rh-group genotype was DCe/DCe,and phenotype was CCDee.Conclusion:Genotyping techniques can assist in deducing the molecular mechanisms of some weakly expressed RhC,c,E,and e in patients'sera to aid in the identification of difficult antibodies and thus ensure the safety of patients'blood transfusion.
10.Design of intelligent horizontal rotating cell culture device
Li-Fei YANG ; Ye-Rong QIAN ; Jun-Xi XIANG ; Ai-Hua SHI ; Xin LIU ; Sha-Sha WEI ; Yi LYU ; Peng LIU
Chinese Medical Equipment Journal 2024;45(9):41-45
Objective To develop an intelligent horizontal rotating cell culture device with high modularity,easy operation,easy disinfection,low cost and high stability.Methods The cell culture device consisted of a rotating culture module,a dirve module,a control module and control software,with the shells of all the modules being manufactured by 3D printing.The rotating culture module was composed of a tubular electrospun scaffold,a cell culture chamber,a magnetic coupling rotor and polypropylene pipeline;the drive module was made up of a N20 reduction motor and a magnetic coupling rotor;the control module included an ESP-8266 chip and a printed circuit board;the control software was developed with Blinker IoT platform and C++language.The device was used to culture human intrahepatic bile duct epithelial cells to verify its effects.Results Light microscopy and scanning electron microscopy images showed that a uniform and continuous cell layer was formed on the surface of the tubular electrospun scaffold.Conclusion The intelligent horizontal rotating cell culture device achieves uniform growth of cells on the inner surface of tubular electrospun scaffolds,and can be used as an effective platform for cell culture on tubular scaffolds.[Chinese Medical Equipment Journal,2024,45(9):41-45]

Result Analysis
Print
Save
E-mail