1.Small Intestine Lipid Absorption and Health: The Improvement Effect of Exercise Under The Challenge of High-fat Diet
Wei-Huan WANG ; Yu-Xi DAI ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(6):1560-1573
The two core causes of obesity in modern lifestyle are high-fat diet (HFD) and insufficient physical activity. HFD can lead to disruption of gut microbiota and abnormal lipid metabolism, further exacerbating the process of obesity. The small intestine, as the “first checkpoint” for the digestion and absorption of dietary lipids into the body, plays a pivotal role in lipid metabolism. The small intestine is involved in the digestion, absorption, transport, and synthesis of dietary lipids. The absorption of lipids in the small intestine is a crucial step, as overactive absorption leads to a large amount of lipids entering the bloodstream, which affects the occurrence of obesity. HFD can lead to insulin resistance, disruption of gut microbiota, and inflammatory response in the body, which can further induce lipid absorption and metabolism disorders in the small intestine, thereby promoting the occurrence of chronic metabolic diseases such as obesity. Long term HFD can accelerate pathological structural remodeling and lipid absorption dysfunction of the small intestine: after high-fat diet, the small intestine becomes longer and heavier, with excessive villi elongation and microvilli elongation, thereby increasing the surface area of lipid absorption and causing lipid overload in the small intestine. In addition, overexpression of small intestine uptake transporters, intestinal mucosal damage induced “intestinal leakage”, dysbiosis of intestinal microbiota, ultimately leading to abnormal lipid absorption and chronic inflammation, accelerating lipid accumulation and obesity. Exercise, as one of the important means of simple, economical, and effective proactive health interventions, has always been highly regarded for its role in improving lipid metabolism homeostasis. The effect of exercise on small intestine lipid absorption shows a dose-dependent effect. Moderate to low-intensity aerobic exercise can improve the intestinal microenvironment, regulate the structure and lipid absorption function of the small intestine, promote lipid metabolism and health, while vigorous exercise, excessive exercise, and long-term high-intensity training can cause intestinal discomfort, leading to the destruction of intestinal structure and related symptoms, affecting lipid absorption. Long term regular exercise can regulate the diversity of intestinal microbiota, inhibit inflammatory signal transduction such as NF-κB, enhance intestinal mucosal barrier function, and improve intestinal lipid metabolism disorders, further enhancing the process of small intestinal lipid absorption. Exercise also participates in the remodeling process of small intestinal epithelial cells, regulating epithelial structural homeostasis by activating cell proliferation related pathways such as Wnt/β-catenin. Exercise can regulate the expression of lipid transport proteins CD36, FATP, and NPC1L1, and regulate the function of small intestine lipid absorption. However, the research on the effects of long-term exercise on small intestine structure, villus structure, absorption surface area, and lipid absorption related proteins is not systematic enough, the results are inconsistent, and the relevant mechanisms are not clear. In the future, experimental research can be conducted on the dose-response relationship of different intensities and forms of exercise, exploring the mechanisms of exercise improving small intestine lipid absorption and providing theoretical reference for scientific weight loss. It should be noted that the intestine is an organ that is sensitive to exercise response. How to determine the appropriate range, threshold, and form of exercise intensity to ensure beneficial regulation of intestinal lipid metabolism induced by exercise should become an important research direction in the future.
2.Exercise Improves Metaflammation: The Potential Regulatory Role of BDNF
Yu-Xi DAI ; Wei-Huan WANG ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(9):2314-2331
Metaflammation is a crucial mechanism in the onset and advancement of metabolic disorders, primarily defined by the activation of immune cells and increased concentrations of pro-inflammatory substances. The function of brain-derived neurotrophic factor (BDNF) in modulating immune and metabolic processes has garnered heightened interest, as BDNF suppresses glial cell activation and orchestrates inflammatory responses in the central nervous system via its receptor tyrosine kinase receptor B (TrkB), while also diminishing local inflammation in peripheral tissues by influencing macrophage polarization. Exercise, as a non-pharmacological intervention, is extensively employed to enhance metabolic disorders. A crucial mechanism underlying its efficacy is the significant induction of BDNF expression in central (hypothalamus, hippocampus, prefrontal cortex, and brainstem) and peripheral (liver, adipose tissue, intestines, and skeletal muscle) tissues and organs. This induction subsequently regulates inflammatory responses, ameliorates metabolic conditions, and decelerates disease progression. Consequently, BDNF is considered a pivotal molecule in the motor-metabolic regulation axis. Despite prior suggestions that BDNF may have a role in the regulation of exercise-induced inflammation, systematic data remains inadequate. Since that time, the field continues to lack structured descriptions and conversations pertinent to it. As exercise physiology research has advanced, the academic community has increasingly recognized that exercise is a multifaceted activity regulated by various systems, with its effects contingent upon the interplay of elements such as type, intensity, and frequency of exercise. Consequently, it is imperative to transcend the prior study paradigm that concentrated solely on localized effects and singular mechanisms and transition towards a comprehensive understanding of the systemic advantages of exercise. A multitude of investigations has validated that exercise confers health advantages for individuals with metabolic disorders, encompassing youngsters, adolescents, middle-aged individuals, and older persons, and typically enhances health via BDNF secretion. However, exercise is a double-edged sword; the relationship between exercise and health is not linearly positive. Insufficient exercise is ineffective, while excessive exercise can be detrimental to health. Consequently, it is crucial to scientifically develop exercise prescriptions, define appropriate exercise loads, and optimize health benefits to regulate bodily metabolism. BDNF mitigates metaflammation via many pathways during exercise. Initially, BDNF suppresses pro-inflammatory factors and facilitates the production of anti-inflammatory factors by modulating bidirectional transmission between neural and immune cells, therefore diminishing the inflammatory response. Secondly, exercise stimulates the PI3K/Akt, AMPK, and other signaling pathways via BDNF, enhancing insulin sensitivity, reducing lipotoxicity, and fostering mitochondrial production, so further optimizing the body’s metabolic condition. Moreover, exercise-induced BDNF contributes to the attenuation of systemic inflammation by collaborating with several organs, enhancing hepatic antioxidant capacity, regulating immunological response, and optimizing “gut-brain” axis functionality. These processes underscore the efficacy of exercise as a non-pharmacological intervention for enhancing anti-inflammatory and metabolic health. Despite substantial experimental evidence demonstrating the efficacy of exercise in mitigating inflammation and enhancing BDNF levels, numerous limitations persist in the existing studies. Primarily, the majority of studies have concentrated on molecular biology and lack causal experimental evidence that explicitly confirms BDNF as a crucial mediator in the exercise regulation of metaflammation. Furthermore, the outcomes of current molecular investigations are inadequately applicable to clinical practice, and a definitive pathway of “exercise-BDNF-metaflammation” remains unestablished. Moreover, the existing research methodology, reliant on animal models or limited human subject samples, constrains the broad dissemination of the findings. Future research should progressively transition from investigating isolated and localized pathways to a comprehensive multilevel and multidimensional framework that incorporates systems biology and exercise physiology. Practically, there is an immediate necessity to undertake extensive, double-blind, randomized controlled longitudinal human studies utilizing multi-omics technologies (e.g., transcriptomics, proteomics, and metabolomics) to investigate the principal signaling pathways of BDNF-mediated metaflammation and to elucidate the causal relationships and molecular mechanisms involved. Establishing a more comprehensive scientific evidence system aims to furnish a robust theoretical framework and practical guidance for the mechanistic interpretation, clinical application, and pharmaceutical development of exercise in the prevention and treatment of metabolic diseases.
3.tRF Prospect: tRNA-derived Fragment Target Prediction Based on Neural Network Learning
Dai-Xi REN ; Jian-Yong YI ; Yong-Zhen MO ; Mei YANG ; Wei XIONG ; Zhao-Yang ZENG ; Lei SHI
Progress in Biochemistry and Biophysics 2025;52(9):2428-2438
ObjectiveTransfer RNA-derived fragments (tRFs) are a recently characterized and rapidly expanding class of small non-coding RNAs, typically ranging from 13 to 50 nucleotides in length. They are derived from mature or precursor tRNA molecules through specific cleavage events and have been implicated in a wide range of cellular processes. Increasing evidence indicates that tRFs play important regulatory roles in gene expression, primarily by interacting with target messenger RNAs (mRNAs) to induce transcript degradation, in a manner partially analogous to microRNAs (miRNAs). However, despite their emerging biological relevance and potential roles in disease mechanisms, there remains a significant lack of computational tools capable of systematically predicting the interaction landscape between tRFs and their target mRNAs. Existing databases often rely on limited interaction features and lack the flexibility to accommodate novel or user-defined tRF sequences. The primary goal of this study was to develop a machine learning based prediction algorithm that enables high-throughput, accurate identification of tRF:mRNA binding events, thereby facilitating the functional analysis of tRF regulatory networks. MethodsWe began by assembling a manually curated dataset of 38 687 experimentally verified tRF:mRNA interaction pairs and extracting seven biologically informed features for each pair: (1) AU content of the binding site, (2) site pairing status, (3) binding region location, (4) number of binding sites per mRNA, (5) length of the longest consecutive complementary stretch, (6) total binding region length, and (7) seed sequence complementarity. Using this dataset and feature set, we trained 4 distinct machine learning classifiers—logistic regression, random forest, decision tree, and a multilayer perceptron (MLP)—to compare their ability to discriminate true interactions from non-interactions. Each model’s performance was evaluated using overall accuracy, receiver operating characteristic (ROC) curves, and the corresponding area under the ROC curve (AUC). The MLP consistently achieved the highest AUC among the four, and was therefore selected as the backbone of our prediction framework, which we named tRF Prospect. For biological validation, we retrieved 3 high-throughput RNA-seq datasets from the gene expression omnibus (GEO) in which individual tRFs were overexpressed: AS-tDR-007333 (GSE184690), tRF-3004b (GSE197091), and tRF-20-S998LO9D (GSE208381). Differential expression analysis of each dataset identified genes downregulated upon tRF overexpression, which we designated as putative targets. We then compared the predictions generated by tRF Prospect against those from three established tools—tRFTar, tRForest, and tRFTarget—by quantifying the number of predicted targets for each tRF and assessing concordance with the experimentally derived gene sets. ResultsThe proposed algorithm achieved high predictive accuracy, with an AUC of 0.934. Functional validation was conducted using transcriptome-wide RNA-seq datasets from cells overexpressing specific tRFs, confirming the model’s ability to accurately predict biologically relevant downregulation of mRNA targets. When benchmarked against established tools such as tRFTar, tRForest, and tRFTarget, tRF Prospect consistently demonstrated superior performance, both in terms of predictive precision and sensitivity, as well as in identifying a higher number of true-positive interactions. Moreover, unlike static databases that are limited to precomputed results, tRF Prospect supports real-time prediction for any user-defined tRF sequence, enhancing its applicability in exploratory and hypothesis-driven research. ConclusionThis study introduces tRF Prospect as a powerful and flexible computational tool for investigating tRF:mRNA interactions. By leveraging the predictive strength of deep learning and incorporating a broad spectrum of interaction-relevant features, it addresses key limitations of existing platforms. Specifically, tRF Prospect: (1) expands the range of detectable tRF and target types; (2) improves prediction accuracy through multilayer perceptron model; and (3) allows for dynamic, user-driven analysis beyond database constraints. Although the current version emphasizes miRNA-like repression mechanisms and faces challenges in accurately capturing 5'UTR-associated binding events, it nonetheless provides a critical foundation for future studies aiming to unravel the complex roles of tRFs in gene regulation, cellular function, and disease pathogenesis.
4.Circadian and non-circadian regulation of the male reproductive system and reproductive damage: advances in the role and mechanisms of clock genes.
Meng-Chao HE ; Ying-Zhong DAI ; Yi-Meng WANG ; Qin-Ru LI ; Si-Wen LUO ; Xi LING ; Tong WANG ; Jia CAO ; Qing CHEN
Acta Physiologica Sinica 2025;77(4):712-720
Recently, male reproductive health has attracted extensive attention, with the adverse effects of circadian disruption on male fertility gradually gaining recognition. However, the mechanism by which circadian disruption leads to damage to male reproductive system remains unclear. In this review, we first summarized the dual regulatory roles of circadian clock genes on the male reproductive system: (1) circadian regulation of testosterone synthesis via the hypothalamic-pituitary-testicular (HPT) and hypothalamic-pituitary-adrenal (HPA) axes; (2) non-circadian regulation of spermatogenesis. Next, we further listed the possible mechanisms by which circadian disruption impairs male fertility, including interference with the oscillatory function of the reproductive system, i.e., synchronization of the HPT axis, crosstalk between the HPT axis and the HPA axis, as well as direct damage to germ cells by disturbing the non-oscillatory function of the reproductive system. Future research using spatiotemporal omics, epigenomic assays, and neural circuit mapping in studying the male reproductive system may provide new clues to systematically unravel the mechanisms by which circadian disruption affects male reproductive system through circadian clock genes.
Male
;
Humans
;
Animals
;
Circadian Clocks/physiology*
;
Hypothalamo-Hypophyseal System/physiology*
;
Circadian Rhythm/genetics*
;
Spermatogenesis/physiology*
;
Pituitary-Adrenal System/physiology*
;
Testis/physiology*
;
Testosterone/biosynthesis*
;
CLOCK Proteins
;
Infertility, Male/physiopathology*
5.A new triterpenoid from Elephantopus scaber.
Zu-Xiao DING ; Hong-Xi XIE ; Lin CHEN ; Jun-Jie HAO ; Yan-Qiu LUO ; Zhi-Yong JIANG ; Shi-Kui XU
China Journal of Chinese Materia Medica 2025;50(5):1224-1230
The chemical constituents of the petroleum ether extract derived from the 90% ethanol extract of Elephantopus scaber were investigated. By silica gel column chromatography, C_(18), MCI column chromatography and semi-preparative high performance liquid chromatography, ten compounds were isolated. Their structures were identified as 3β-hydroxy-6β,7β-epoxytaraxeran-14-ene(1), 3β-hydroxyolean-12-en-28-oic acid(2), D-friedoolean-14-ene-3β,7α-diol(3), 3β-hydroxy-11α-methoxyolean-12-ene(4), 3β-hydroxyolean-11,13(18)-diene(5), 11α-hydroxy-β-amyrin(6), betulinic acid(7), 3β-hydroxy-30-norlupan-20-one(8), 6-acetonylchelerythrine(9), and 4',5'-dehydrodiodictyonema A(10) by analysis of the 1D NMR, 2D NMR, MS, and IR spectral data. Among them, compound 1 was a new triterpene and other compounds except compounds 2 and 7 were isolated from this plant for the first time.
Triterpenes/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Molecular Structure
;
Asteraceae/chemistry*
;
Chromatography, High Pressure Liquid
;
Magnetic Resonance Spectroscopy
6.A new nor-clerodane diterpenoid from Croton lauioides.
Hao-Xin WANG ; Wen-Hao DU ; Hong-Xi XIE ; Lin CHEN ; Jun-Jie HAO ; Zhi-Yong JIANG
China Journal of Chinese Materia Medica 2025;50(11):3049-3053
The chemical constituents of the chloroform extract of the 90% methanol extract obtained from the dried branches and leaves of Croton lauioides were investigated. By using silica gel column chromatography, C_(18 )column chromatography, MCI column chromatography, and semi-preparative high-performance liquid chromatography(HPLC), six compounds were isolated. Their structures were identified as lauioidine(1), 2α-methoxy-8α-hydroxy-6-oxogermacra-1(10),7(11)-dien-8,12-olide(2), myrrhanolide B(3), gossweilone(4), 6β,7β-epox-4α-hydroxyguaian-10-ene(5), and 4(15)-eudesmane-1β,5α-diol(6) by analyzing the HR-ESI-MS, IR, ECD, 1D NMR and 2D NMR data, as well as their physicochemical properties. All compounds were isolated from C. lauioides for the first time, among which compound 1 is a new nor-clerodane diterpenoid.
Croton/chemistry*
;
Diterpenes, Clerodane/isolation & purification*
;
Molecular Structure
;
Drugs, Chinese Herbal/isolation & purification*
;
Magnetic Resonance Spectroscopy
;
Chromatography, High Pressure Liquid
7.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
8.Exploration of evaluation criteria based on the biological variation in the external quality assessment for basic semen analysis in China.
Xi-Yan WU ; Jin-Chun LU ; Xin-Hua PENG ; Jing-Liang HE ; Dao WANG ; Cong-Ling DAI ; Wen-Bing ZHU ; Gang LIU ; Wei-Na LI
Asian Journal of Andrology 2025;27(5):621-626
This study explores whether the current external quality assessment (EQA) level and acceptable bias for basic semen analysis in China are clinically useful. We collected data of semen EQA from Andrology laboratories in the Hunan Province (China) in 2022 and searched for data in the published literature from January 2000 to December 2023 in China. On the basis of these data, we analyzed the coefficients of variation and acceptable biases of different quality control materials for basic semen analysis through robust statistics. We compared these findings with quality specifications based on biological variation from optimal, desirable, and minimum levels of bias to seek a unified and more suitable semen EQA bias evaluation standard for China's national conditions. Different sources of semen quality control material exhibited considerable variation in acceptable biases among laboratories, ranging from 8.2% to 56.9%. A total of 50.0% of the laboratories met the minimum quality specifications for progressive motility (PR), whereas 100.0% and 75.0% of laboratories met only the minimum quality specifications for sperm concentration and total motility (nonprogressive [NP] + PR), respectively. The Z value for sperm concentration and PR+NP was equivalent to the desirable performance specification, whereas the Z value for PR was equivalent only to the minimum performance specification. This study highlights the feasibility of operating external quality assessment schemes for basic semen analysis using quality specifications based on biological variation. These specifications should be unified among external quality control (EQC) centers based on biological variation.
Semen Analysis/standards*
;
Humans
;
China
;
Male
;
Quality Control
;
Sperm Motility
;
Sperm Count/standards*
9.Clinical characteristics and outcomes of 11 neonates with venous thrombosis.
Xi-Ge GU ; Li-Ying DAI ; Xiao-Qing SHI ; Wen-Chao ZHANG ; Yong-Li ZHANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):588-594
OBJECTIVES:
To summarize the clinical characteristics, diagnosis, and treatment outcomes of neonatal venous thrombosis.
METHODS:
A retrospective analysis was conducted on the clinical data of 11 neonates with venous thrombosis admitted to the Department of Neonatology of Anhui Children's Hospital from January 2019 to September 2024. The clinical characteristics, diagnostic approaches, treatments, and outcomes were analyzed.
RESULTS:
Among the 11 neonates diagnosed with venous thrombosis, 5 were male, and 6 were preterm infants, with a median gestational age of 35+6 weeks, birth weight of (2 322±1 069) g, and admission temperature of (36.6±0.4)°C. The median age at symptom onset was 6 days. Of the 11 cases, 8 limb venous thromboses and 1 portal vein thrombosis were confirmed by vascular ultrasound, and 2 cases of intracranial venous sinus thrombosis were confirmed by magnetic resonance imaging. Ten cases received low molecular weight heparin for anticoagulation, with a treatment duration of (24±15) days; 2 cases were treated with urokinase thrombolysis, and 4 cases received fresh frozen plasma transfusion. Thrombosis resolved in 7 cases before discharge. Partial resolution occurred in 2 cases before discharge (1 continued outpatient treatment until resolution and 1 resolved during follow-up). One case was transferred to another hospital after 1 day of treatment and was discharged after thrombosis reduction. No adverse reactions such as bleeding were observed. One neonate with cerebral infarction at admission did not receive heparin anticoagulation and was followed up as an outpatient.
CONCLUSIONS
Vascular ultrasound is the most commonly used diagnostic method for neonatal venous thrombosis. Heparin anticoagulation is the recommended treatment. The overall prognosis of neonatal venous thrombosis is favorable.
Humans
;
Male
;
Venous Thrombosis/drug therapy*
;
Infant, Newborn
;
Female
;
Retrospective Studies
10.Effects of Oridonin on Platelet Function and Related Mechanisms.
Yu LI ; Rong YAN ; Meng-Nan YANG ; Kang-Xi ZHOU ; Ke-Sheng DAI
Journal of Experimental Hematology 2025;33(4):1104-1112
OBJECTIVE:
To investigate the effects of oridonin on platelet function and related mechanisms.
METHODS:
Washed platelets from healthy adults and mice were incubated with different concentrations of oridonin (2.5, 5 and 10 μmol/L) in vitro . The surface expression level of P-selectin and the activation of integrin αIIbβ3 in platelets were detected by flow cytometry, and the aggregation ability of platelets under the stimulation by various agonists was detected by light transmission aggregometry. The expression of P-AKT (Ser473) was detected by protein immunoblotting. Arterial thrombosis model was established in mice with mesenteric injury induced by ferric chloride, and tail hemorrhage model was established by cutting off the tail of mice. The effect of intraperitoneal injection of oridonin (10 mg/kg) on thrombosis and haemostasis was tested.
RESULTS:
Oridonin inhibited platelet P-selectin expression and integrin αIIbβ3 activation. In the presence of different stimulants, oridonin inhibited platelet aggregation in a concentration-dependent manner. The phosphorylation level of AKT Ser473 was reduced in the groups treated with different concentrations of oridonin. Oridonin significantly prolonged the time of mesenteric artery thrombosis in mice, but did not affect the tail bleeding time.
CONCLUSION
Oridonin inhibits platelet activation, aggregation, and thrombosis by inhibiting AKT phosphorylation, and may be used as a potential antiplatelet drug.
Diterpenes, Kaurane/pharmacology*
;
Animals
;
Mice
;
Blood Platelets/drug effects*
;
Platelet Aggregation/drug effects*
;
P-Selectin/metabolism*
;
Thrombosis
;
Platelet Glycoprotein GPIIb-IIIa Complex/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Humans
;
Phosphorylation
;
Platelet Activation/drug effects*

Result Analysis
Print
Save
E-mail