1.Pathological changes in the total knee joint during spontaneous knee osteoarthritis in guinea pigs at different months of age
Xiaoshen HU ; Huijing LI ; Junling LYU ; Xianjun XIAO ; Juan LI ; Xiang LI ; Ling LIU ; Rongjiang JIN
Chinese Journal of Tissue Engineering Research 2025;29(11):2218-2224
BACKGROUND:The guinea pig is considered to be the most useful spontaneous model for evaluating primary osteoarthritis in humans because of its similar knee joint structure and close histopathologic features to those of humans. OBJECTIVE:To investigate the pathological process of spontaneous knee osteoarthritis in guinea pigs by analyzing the histopathology of the total knee joint of guinea pigs aged 1 to 18 months. METHODS:Eight healthy female Hartley guinea pigs in each age group of 1,6,10,14,16,and 18 months old were selected.The quadriceps femoris was taken for hematoxylin-eosin staining,and the total knee joint was stained with hematoxylin-eosin and toluidine blue.The histopathology of the cartilage,subchondral bone,synovium,meniscus,and muscles were observed under light microscope.Mankin's score and synovitis score were compared,and the correlation analysis was conducted. RESULTS AND CONCLUSION:As the guinea pig age increased,the Mankin's score increased(P<0.05),and the pathological score of synovitis also gradually increased(P<0.05),and there was a significant positive correlation between the two(r=0.641,P<0.001).The incidence rate of subchondral bone marrow lesion in 18-month-old guinea pigs was 50%,and the incidence of meniscus injury was 37.5%.In addition,osteophyte and narrowing of the joint space were observed,and only a few guinea pigs had inflammation in the quadriceps femoris.To conclude,guinea pigs develop significant cartilage defects,synovial inflammation,subchondral bone lesions,meniscus injury,osteophyte formation,and joint space narrowing as they age,all of which are similar to the pathological processes of primary knee osteoarthritis in humans,making it an ideal model of spontaneous knee osteoarthritis.
2.Personal protection and influencing factors of livestock workers in Xinjiang
Xixiao MA ; Xueying XIANG ; Zhaojie WANG ; Wanting XU ; Jiguo JIN ; Fan WU ; Xiangnan WEI ; Jianyong WU ; Fuye LI
Journal of Environmental and Occupational Medicine 2025;42(5):578-585
Background Personal protection is crucial for reducing the risk of zoonotic pathogen infection among livestock workers. Investigating the current status of its implementation and associated influencing factors can provide empirical evidence for developing more effective intervention measures. Objective To investigate the current status of personal protection implementation among livestock workers in Xinjiang, China and its influencing factors, providing a reference for formulating targeted intervention measures. Methods This study was conducted in Bayingolin Mongol Autonomous Prefecture, Kashgar region, and the First and Eighth Divisions of Xinjiang Production and Construction Corps. We selected large-scale cattle and sheep farms, cooperatives, individual livestock households, livestock trading markets, slaughterhouses, and retail markets. Using cluster sampling, we recruited all livestock workers (
3.Impact of dairy farming on gut microbiota structure and diversity of practitioners
Zhaojie WANG ; Xixiao MA ; Xianxia LIU ; Yanggui CHEN ; Xueying XIANG ; Wanting XU ; Jiguo JIN ; Fan WU ; Xiangnan WEI ; Jianyong WU ; Fuye LI
Journal of Environmental and Occupational Medicine 2025;42(6):668-673
Background Animal farming may affect the structure and diversity of gut microbiota of farm workers, but it needs more studies to provide solid evidence. Objective To analyze the diversity characteristics of gut microbiota in dairy farm workers, dairy cows, and the control population (non-animal contact occupational group), and to assess the impact of dairy farming on the gut microbiota of workers. Methods The 16S rRNA full-length amplicon sequencing technology was used to sequence 60 fecal samples from dairy farm workers, 89 from dairy cows, and 50 from the general population. The gut microbiota structure characteristics, including operational taxonomic units (OTUs), alpha diversity, beta diversity, and the composition of species at the phylum, family, and genus levels were analyzed. The differences in gut microbiota among the three groups of samples were compared to explore the impact of occupational exposure on the gut microbiota structure of dairy farm workers. Results A total of
4.Application of left internal mammary artery and bilateral radial arteries in off-pump total arterial coronary artery bypass grafting
Shengzhong LIU ; Dachuang WEI ; Bo XIANG ; Jin TAN ; Lu JIANG ; Tao YU ; Keli HUANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1159-1165
Objective To evaluate the safety and efficacy of total arterial off-pump coronary artery bypass grafting (OPCABG) using a left internal thoracic artery (LITA) combined with bilateral radial arteries (RAs). Methods We retrospectively analyzed the clinical data of patients with severe multi-vessel coronary artery disease who underwent total arterial OPCABG with a LITA and bilateral RAs at Sichuan Provincial People’s Hospital from November 2020 to April 2023. Results A total of 24 patients were included, comprising 23 males and 1 female, with a mean age of (53.63±4.33) years. The New York Heart Association (NYHA) functional class was Ⅱ to Ⅲ. The mean number of distal anastomoses was 3.17±0.38. A Y-graft was constructed in 12 patients and sequential grafting was performed in 4 patients. Concomitant procedures included coronary endarterectomy in 1 patient, intra-aortic balloon pump (IABP) implantation in 10 patients, and thymoma resection in 1 patient. The mean operative time was (308.13±30.39) min, mechanical ventilation time was (15.42±7.42) h, ICU stay was (46.08±27.32) h, and postoperative hospital stay was (11.71±1.90) d. There were no in-hospital deaths. Postoperative complications included one patient of acute renal failure and one patient of cerebral infarction. Pre-discharge color Doppler echocardiography revealed that the left ventricular end-diastolic diameter was significantly smaller than before surgery (P<0.05), while the left ventricular ejection fraction and fractional shortening were significantly higher (P<0.05). Coronary computed tomography angiography (CTA) showed that all arterial grafts were patent. During a mean follow-up of (14.58±8.75) months, no patients experienced angina recurrence or mortality. Repeat coronary CTA or angiography in 16 patients one year postoperatively confirmed that all arterial grafts remained patent. Conclusion Total arterial OPCABG using a LITA and bilateral RAs is a safe and effective treatment for patients with severe multi-vessel coronary artery disease. For high-risk patients, intraoperative IABP support is recommended.
5.The diagnosis and testing of immune hemolytic anemia induced by ceftizoxime sodium drug-dependent antibodies
Jing WANG ; Yangyi XIE ; Sha JIN ; Wei SHEN ; Dong XIANG ; Zhongying WANG
Chinese Journal of Blood Transfusion 2025;38(9):1230-1235
Objective: To explore the laboratory testing methods and clinical management strategies for immune hemolytic anemia induced by Ceftizoxime sodium drug-dependent antibodies. Methods: Patient blood samples were subjected to blood typing, direct antiglobulin test, and unexpected antibody identification. Ceftizoxime sodium drug-dependent antibodies were detected using the immune complex method and drug-sensitized red cell method. The properties and titers of the drug antibodies were further assessed. Flow cytometry was used to assess the complement activation capacity of the drug antibodies in vitro. Results: Direct antiglobulin tests (IgG and C3d) were positive. Ceftizoxime sodium drug-dependent antibodies were identified using both the immune complex method and the sensitized red cell method, their titers significantly increased following the addition of the drug. Flow cytometry confirmed the complement activation capability of these antibodies and identified 30 minutes as the optimal time for activation in vitro. The patient's condition improved rapidly after drug withdrawal and supportive transfusion, resulting in a favorable outcome. Conclusion: Ceftizoxime sodium can cause drug-induced immune hemolytic anemia via complement activation mediated by drug-dependent antibodies. Serological testing is essential for diagnosing drug-induced hemolytic anemia. Clinicians should be vigilant for this adverse reaction. The offending drug must be promptly discontinued, and supportive care should be initiated upon the onset of symptoms.
6.Ubiquitination and Deubiquitination in Oral Squamous Cell Carcinoma: Potential Drug Targets
Han CHANG ; Meng-Xiang ZHAO ; Xiao-Feng JIN ; Bin-Bin YING
Progress in Biochemistry and Biophysics 2025;52(10):2512-2534
Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy worldwide, accounting for more than 90% of all oral cancers, and is characterized by high invasiveness and poor long-term prognosis. Its etiology is multifactorial, involving tobacco use, alcohol consumption, and human papillomavirus (HPV) infection. Oral leukoplakia and erythroplakia are the main precancerous lesions lesions, with oral leukoplakia being the most common. Both OSCC and premalignant lesions are closely associated with aberrant activation of multiple signaling pathways. Post-translational modifications (such as ubiquitination and deubiquitination) play key roles in regulating these pathways by controlling protein stability and activity. Growing evidence indicates that dysregulated ubiquitination/deubiquitination can mediate OSCC initiation and progression via aberrant activation of signaling pathways. The ubiquitination/deubiquitination process mainly involves E3 ligases (E3s) that catalyze substrate ubiquitination, deubiquitinating enzymes (DUBs) that remove ubiquitin chains, and the 26S proteasome complex that degrades ubiquitinated substrates. Abnormal expression or mutation of E3s and DUBs can lead to altered stability of critical tumor-related proteins, thereby driving OSCC initiation and progression. Therefore, understanding the aberrantly activated signaling pathways in OSCC and the ubiquitination/deubiquitination mechanisms within these pathways will help elucidate the molecular mechanisms and improve OSCC treatment by targeting relevant components. Here, we summarize four aberrantly activated signaling pathways in OSCC―the PI3K/AKT/mTOR pathway, Wnt/β-catenin pathway, Hippo pathway, and canonical NF-κB pathway―and systematically review the regulatory mechanisms of ubiquitination/deubiquitination within these pathways, along with potential drug targets. PI3K/AKT/mTOR pathway is aberrantly activated in approximately 70% of OSCC cases. It is modulated by E3s (e.g., FBXW7 and NEDD4) and DUBs (e.g., USP7 and USP10): FBXW7 and USP10 inhibit signaling, while NEDD4 and USP7 potentiate it. Aberrant activation of the Wnt/β‑catenin pathway leads to β‑catenin nuclear translocation and induction of cell proliferation. This pathway is modulated by E3s (e.g., c-Cbl and RNF43) and DUBs (e.g., USP9X and USP20): c-Cbl and RNF43 inhibit signaling, while USP9X and USP20 potentiate it. Hippo pathway inactivation permits YAP/TAZ to enter the nucleus and promotes cancer cell metastasis. This pathway is modulated by E3s (e.g., CRL4DCAF1 and SIAH2) and DUBs (e.g., USP1 and USP21): CRL4DCAF1 and SIAH2 inhibit signaling, while USP1 and USP21 potentiate it. Persistent activation of the canonical NF-κB pathway is associated with an inflammatory microenvironment and chemotherapy resistance. This pathway is modulated by E3s (e.g., TRAF6 and LUBAC) and DUBs (e.g., A20 and CYLD): A20 and CYLD inhibit signaling, while TRAF6 and LUBAC potentiate it. Targeting these E3s and DUBs provides directions for OSCC drug research. Small-molecule inhibitors such as YCH2823 (a USP7 inhibitor), GSK2643943A (a USP20 inhibitor), and HOIPIN-8 (a LUBAC inhibitor) have shown promising antitumor activity in preclinical models; PROTAC molecules, by binding to surface sites of target proteins and recruiting E3s, achieve targeted ubiquitination and degradation of proteins insensitive to small-molecule inhibitors, for example, PU7-1-mediated USP7 degradation, offering new strategies to overcome traditional drug limitations. Currently, NX-1607 (a Cbl-b inhibitor) has entered phase I clinical trials, with preliminary results confirming its safety and antitumor activity. Future research on aberrant E3s and DUBs in OSCC and the development of highly specific inhibitors will be of great significance for OSCC precision therapy.
7.Prediction of Pulmonary Nodule Progression Based on Multi-modal Data Fusion of CCNet-DGNN Model
Lehua YU ; Yehui PENG ; Wei YANG ; Xinghua XIANG ; Rui LIU ; Xiongjun ZHAO ; Maolan AYIDANA ; Yue LI ; Wenyuan XU ; Min JIN ; Shaoliang PENG ; Baojin HUA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):135-143
ObjectiveThis study aims to develop and validate a novel multimodal predictive model, termed criss-cross network(CCNet)-directed graph neural network(DGNN)(CGN), for accurate assessment of pulmonary nodule progression in high-risk individuals for lung cancer, by integrating longitudinal chest computed tomography(CT) imaging with both traditional Chinese and western clinical evaluation data. MethodsA cohort of 4 432 patients with pulmonary nodules was retrospectively analyzed. A twin CCNet was employed to extract spatiotemporal representations from paired sequential CT scans. Structured clinical assessment and imaging-derived features were encoded via a multilayer perceptron, and a similarity-based alignment strategy was adopted to harmonize multimodal imaging features across temporal dimensions. Subsequently, a DGNN was constructed to integrate heterogeneous features, where nodes represented modality-specific embeddings and edges denoted inter-modal information flow. Finally, model optimization was performed using a joint loss function combining cross-entropy and cosine similarity loss, facilitating robust classification of nodule progression status. ResultsThe proposed CGN model demonstrated superior predictive performance on the held-out test set, achieving an area under the receiver operating characteristic curve(AUC) of 0.830, accuracy of 0.843, sensitivity of 0.657, specificity of 0.712, Cohen's Kappa of 0.417, and F1 score of 0.544. Compared with unimodal baselines, the CGN model yielded a 36%-48% relative improvement in AUC. Ablation studies revealed a 2%-22% increase in AUC when compared to simplified architectures lacking key components, substantiating the efficacy of the proposed multimodal fusion strategy and modular design. Incorporation of traditional Chinese medicine (TCM)-specific symptomatology led to an additional 5% improvement in AUC, underscoring the complementary value of integrating TCM and western clinical data. Through gradient-weighted activation mapping visualization analysis, it was found that the model's attention predominantly focused on nodule regions and effectively captured dynamic associations between clinical data and imaging-derived features. ConclusionThe CGN model, by synergistically combining cross-attention encoding with directed graph-based feature integration, enables effective alignment and fusion of heterogeneous multimodal data. The incorporation of both TCM and western clinical information facilitates complementary feature enrichment, thereby enhancing predictive accuracy for pulmonary nodule progression. This approach holds significant potential for supporting intelligent risk stratification and personalized surveillance strategies in lung cancer prevention.
8.Metabolomics and pharmacokinetics of Corni Fructus in ameliorating myocardial ischemic injury.
Xiang-Feng LIU ; Yu WU ; Chao-Yan YANG ; Hua-Wei LIAO ; Yan-Fen CHEN ; Xin HE ; Ying-Fang WANG ; Jin-Ru LIANG
China Journal of Chinese Materia Medica 2025;50(5):1363-1376
This study aims to investigate the ameliorating effect of Corni Fructus(CF) on the myocardial ischemic injury and the pharmacokinetic properties of characteristic components of CF. The mouse model of isoproterenol-induced myocardial ischemia was established and administrated with the aqueous extract of CF. The general efficacy of CF in ameliorating the myocardial ischemic injury was evaluated based on the cardiac histopathology and the levels of myocardial injury markers: creatine kinase isoenzyme(CK-MB) and cardiac troponin I(cTn-I). The metabolomics analysis was carried out for the heart and serum samples of mice to screen the biomarkers of CF in ameliorating the myocardial ischemic injury and then the predicted biomarkers were submitted to metabolic pathway enrichment. The pharmacokinetic analysis was performed for morroniside, loganin, and cornuside Ⅰ in mouse heart and serum samples to obtain the pharmacokinetic parameters of these components. The pharmacokinetic parameters were then integrated on the basis of self-defined weighting coefficients to simulate an integrated pharmacokinetic profile of CF iridoid glycosides in the heart and serum of the mouse model of myocardial ischemia. The results indicated that CF reduced the pathological damage to cardiac cells and tissue(hematoxylin-eosin staining) and lowered the levels of CK-MB and cTn-I in the serum of the mouse model of myocardial ischemia(P<0.01). Metabolomics analysis screed out 31 endogenous metabolites in the heart and 35 in the serum as biomarkers of CF in ameliorating the myocardial ischemic injury. These biomarkers were altered by modeling and restored by CF. Six metabolic pathways in the heart and 5 in the serum were enriched based on these metabolic markers. The main integrated pharmacokinetic parameters of CF iridoid glycosides were T_(max)=1 h, t_(1/2)=(1.52±0.05) h in the heart and T_(max)=1 h, t_(1/2)=(1.56±0.50) h in the serum. Both concentration-time curves showed a double-peak phenomenon. In conclusion, CF demonstrated the cardioprotective effect by regulating metabolic pathways such as taurine and hypotaurine metabolism, and pantothenic acid and coenzyme A biosynthesis. The integrated pharmacokinetics reflect the general pharmacokinetic properties of characteristic components in CF.
Animals
;
Cornus/chemistry*
;
Mice
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Myocardial Ischemia/metabolism*
;
Humans
;
Troponin I/metabolism*
;
Myocardium/pathology*
;
Disease Models, Animal
;
Biomarkers/metabolism*
;
Creatine Kinase, MB Form/metabolism*
9.Mechanism of Zuogui Pills in regulating bone metabolism through OXT/OXTR feed-forward loop based on theory of "all marrows dominated by brain".
Yan-Chen FENG ; Ya-Li LIU ; Xue DANG ; Lu SUN ; Jin-Yao LI ; Jia-Bin SONG ; Shun-Zhi YANG ; Fei-Xiang LIU
China Journal of Chinese Materia Medica 2025;50(10):2761-2768
Grounded in the theory of "all marrows dominated by brain", this study explored the therapeutic mechanism of Zuogui Pills in modulating the oxytocin(OXT)/oxytocin receptor(OXTR) feed-forward loop in the treatment of postmenopausal osteoporosis(PMOP). A PMOP rat model was established using ovariectomy, and 70 Sprague-Dawley female rats were randomly divided into the following groups: sham operation group, model group, estradiol group(17β-estradiol, 0.05 mg·kg~(-1)·d~(-1)), Zuogui Pills low, medium, and high dose groups(0.2, 0.4, 0.8 g·kg~(-1)·d~(-1), respectively), and an antagonist group(atosiban 0.9 mg·kg~(-1)·d~(-1) + 17β-estradiol 0.05 mg·kg~(-1)·d~(-1) + Zuogui Pills 0.4 g·kg~(-1)·d~(-1)). After 12 weeks of model establishment, treatment was administered by gavage once daily for another 12 weeks, followed by sample collection. Enzyme-linked immunosorbent assay(ELISA) was used to measure serum levels of estrogen(E_2), OXT, tartrate-resistant acid phosphatase(TRACP-5b), and bone alkaline phosphatase(BALP). Histopathological changes in the left distal femur were observed through hematoxylin and eosin(HE) staining. Micro-computed tomography(micro-CT) was used to analyze the microstructure of the right distal femur. Western blot was employed to detect the expression levels of OXTR, small GTP-binding protein Ras, Raf1 proto-oncogene(Raf1), mitogen-activated protein kinase kinase 1/2(MEK1/2), and extracellular signal-regulated kinase 1/2(ERK1/2), and their phosphorylated forms in tibial tissues. Compared with the model group, the Zuogui Pills medium and high dose groups showed significantly increased levels of E_2, OXT, and BALP, with a notable decrease in TRACP-5b levels. Morphologically, the trabeculae in the left distal femur were more tightly arranged. The fibrous structure in the right distal femur was significantly improved in the Zuogui Pills high dose group. Additionally, the expression of OXTR, Ras, p-Raf1, p-MEK1/2, and p-ERK1/2 proteins in tibial tissues was significantly increased. The therapeutic effect of the Zuogui Pills high dose group was partially inhibited when an OXTR antagonist was administered. These findings suggest that Zuogui Pills can regulate the OXT/OXTR feed-forward loop, activate the phosphorylation of the downstream Ras/Raf1/MEK/ERK signaling pathway, and ultimately improve bone mineral density, thereby exerting therapeutic effects in PMOP.
Animals
;
Rats, Sprague-Dawley
;
Rats
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Oxytocin/genetics*
;
Receptors, Oxytocin/genetics*
;
Humans
;
Osteoporosis, Postmenopausal/genetics*
;
Bone and Bones/drug effects*
;
Brain/drug effects*
;
Bone Marrow/drug effects*
10.Innovation and application of traditional Chinese medicine dispensing promoted through integration of whole-process data elements.
Huan-Fei YANG ; Si-Yu LI ; Chen-Qian YU ; Jian-Kun WU ; Fang LIU ; Li-Bin JIANG ; Chun-Jin LI ; Xiang-Fei SU ; Wei-Guo BAI ; Hua-Qiang ZHAI ; Shi-Yuan JIN ; Yong-Yan WANG
China Journal of Chinese Materia Medica 2025;50(11):3189-3196
As a new type of production factor that can empower the development of new quality productivity, the data element is an important engine to promote the high quality development of the industry. Traditional Chinese medicine(TCM) dispensing is the most basic work of TCM clinical pharmacy, and its quality directly affects the clinical efficacy of TCM. The integration of data elements and TCM dispensing can stimulate the innovation and vitality of the TCM dispensing industry and promote the high-quality and sustainable development of the industry. A large-scale, detailed, and systematic study on TCM dispensing was conducted. The innovative practice path of data fusion construction in the whole process of TCM dispensing was investigated by integrating the digital resources "nine full activities" of TCM dispensing, creating the digital dictionary of "TCM clinical information data elements", and exploring innovative applications of TCM dispensing driven by data and technology, so as to promote the standardized, digital, and intelligent development of TCM dispensing in medical health services. The research content of this project was successfully selected as the second batch of "Data element×" typical cases of National Data Administration in 2024, which is the only selected case in the field of TCM.
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal
;
Humans

Result Analysis
Print
Save
E-mail