1.Mineralogical studies on iron-containing mineral medicines, Haematitum and Limonitum.
Min LU ; Xiao-Fei WANG ; Cheng-Cheng WANG ; Jing-Xu CHEN ; Hang-Jie ZHU ; Juan LI ; Yan CAO
China Journal of Chinese Materia Medica 2025;50(5):1179-1186
Haematitum and Limonitum are two iron-containing mineral medicines included in the 2020 edition of the Chinese Pharmacopoeia. They have similar main components and major differences in their property, flavor, channel tropism, and clinical uses. In this study, we investigated the surface properties, mineral composition, mineral dissociation, elemental composition, and iron state of Haematitum and Limonitum to explore their mineralogical differences. Scanning electron microscopy(SEM), specific surface and porosity analyzer, X-ray diffractometer(XRD), X-ray photoelectron spectrometer(XPS), and advanced mineral identification and characterization system(AMICS) were used to analyze the mineralogy of Haematitum and Limonitum. The results showed that Haematitum had an angular surface with granular attachments and a specific surface area of 17.04 m~2·g~(-1). In comparison, Limonitum had a smooth and flat surface with a bundled acicular crystal structure and a specific surface area of 46.29 m~2·g~(-1). Haematitum consists of 31 detectable minerals containing 18 elements, with the major element, iron(44.5% Fe~(2+) and 55.5% Fe~(3+)) distributed in 17 minerals, including hematite, iron oxide, knebelite, siderite, and magnesioferrite. Limonitum consists of 32 detectable minerals containing 17 elements, with the major element, iron(14.5% Fe~(2+) and 85.5% Fe~(3+)) distributed in 19 minerals, including limonite, iron oxide, chlorite, and knebelite. In summary, the elemental composition of Haematitum and Limonitum does not differ greatly, but there are large differences in the mineral composition and iron state. The large specific surface area and strong adsorption capacity of Limonitum may be one of the mechanisms of its anti-diarrheal action. The Fe_2O_3 and illite contained in Haematitum and Limonitum may be the key substances for their hemostasis effects. The mineralogical differences are expected to provide a reference for explaining the scientific connotation of mineral medicine and laying a material foundation for studying its mechanism of action.
Iron/analysis*
;
Minerals/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
X-Ray Diffraction
;
Microscopy, Electron, Scanning
;
Photoelectron Spectroscopy
2.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size
3.Preparation process and change law of substances of Hydrargyrum Chloratum Compositum.
Yu YANG ; Ping HUANG ; Jing-Jing YANG ; Qin-Wan HUANG
China Journal of Chinese Materia Medica 2025;50(8):2137-2144
To optimize the traditional refining process of Hydrargyrum Chloratum Compositum(HCC) and explore the change law of substances before and after refining, this study applied the hierarchical analysis method(AHP)-entropy weight method, using appearance, yield, and mercuric chloride content as evaluation indexes. The temperature and time of mild and strong fire were examined as single factors, and an L_9(3~4) orthogonal experiment was used to optimize the refining process. An infrared thermal imaging platform was set up to record the temperature changes on the surface of the tank, aiming to establish a standardized operating procedure for the refining process. Elemental changes, physical phase changes, and thermal property changes of the materials before and after refining were analyzed using atomic absorption spectrophotometry(AAS), X-ray diffraction(XRD) and differential scanning calorimetry(DSC). The results showed that the average overall score of the finished product obtained from the optimized HCC refining process(with mild fire temperature of 102 ℃, mild fire refining time of 30 min, strong fire temperature of 178 ℃, and strong fire refining time of 68 min) was 91.59, with an RSD of 0.076%, indicating that the process is stable and feasible. Combined with thermal imaging data and related research results, it was found that, at the strong fire temperature, mercury ions and nitrate ions generated mercuric chloride under the catalysis of other ions. The mercury content of mercurous chloride, mercuric chloride synthesized from nitric acid, HCC, and the pre-refined sample was 84.535%, 72.376%, 70.838%, and 41.334%, respectively. The highest intensity of the(120) diffraction peak for HCC appeared around 20.36°, but the residual fit value was larger. The synthesis of mercuric chloride from HCC and nitric acid showed an exothermic peak at 190-204 ℃, with the peak shape exhibiting a rightward trend. This study optimized the traditional refining process of HCC and analyzed the elemental changes, physical phase changes, and thermal property changes before and after refining. The findings provide experimental data for exploring the changing patterns in the refining process of HCC and its pharmacological value, as well as for standardizing the traditional refining process in clinical practice.
Drugs, Chinese Herbal/chemistry*
;
X-Ray Diffraction
;
Temperature
;
Calorimetry, Differential Scanning
;
Mercuric Chloride/chemistry*
4.Co-amorphous technology to improve dissolution and physical stability of silybin.
Huan LIU ; Guo-Wei ZHAO ; Qie-Ying JIANG ; Xin-Li LIANG ; Liao-Qi OUYANG ; Hai-Bo DING ; Xu-Long CHEN ; Zheng-Gen LIAO
China Journal of Chinese Materia Medica 2022;47(1):103-110
The present study explored the effect of co-amorphous technology in improving the dissolution rate and stability of silybin based on the puerarin-silybin co-amorphous system prepared by the spray-drying method. Solid-state characterization was carried out by powder X-ray diffraction(PXRD), polarizing microscopy(PLM), Fourier transform infrared spectroscopy(FT-IR), differential scanning calorimetry(DSC), etc. Saturated powder dissolution, intrinsic dissolution rate, moisture absorption, and stability were further investigated. The results showed that puerarin and silybin formed a co-amorphous system at a single glass transition temperature which was higher than that of any crude drug. The intrinsic dissolution rate and supersaturated powder dissolution of silybin in the co-amorphous system were higher than those of the crude drug and amorphous system. The co-amorphous system kept stable for as long as three months under the condition of 40 ℃, 75% relative humidity, which was longer than that of the single amorphous silybin. Therefore, the co-amorphous technology could significantly improve the dissolution and stability of silybin.
Calorimetry, Differential Scanning
;
Desiccation
;
Drug Compounding/methods*
;
Drug Stability
;
Silybin
;
Solubility
;
Spectroscopy, Fourier Transform Infrared
;
Technology
;
X-Ray Diffraction
5.The effects of repetitive firing processes on the optical, thermal, and phase formation changes of zirconia
Alper OZDOGAN ; Hatice OZDEMIR
The Journal of Advanced Prosthodontics 2020;12(1):9-14
PURPOSE: The aim of this study was to investigate the effect of different numbers of heat treatments applied to superstructure porcelain on optical, thermal, and phase formation properties of zirconia.MATERIALS AND METHODS: Forty zirconia specimens were prepared in the form of rectangular prism. Specimens were divided into four groups (n = 10) according to the number of firing at heating values of porcelain. Color differences and translucency parameter were measured, and X-ray diffraction (XRD) analysis and differential scanning calorimetry (DSC) were performed. Data were analyzed with analysis of variance (ANOVA).RESULTS: There were no statistically significant differences in ΔE, TP, L, a, and b value changes of the zirconia specimens as a result of repetitive firing processes (P>.05).CONCLUSION: Although additional firing processes up to 4 increase peak density in thermal analysis, additional firing processes up to 4 times can be applied safely as they do not result in a change in color and phase character of zircon frameworks.
Calorimetry, Differential Scanning
;
Dental Porcelain
;
Fires
;
Heating
;
Hot Temperature
;
X-Ray Diffraction
6.Preparation and characterization of rutile phase TiO₂ nanoparticles and their cytocompatibility with oral cancer cells
Vu Phuong DONG ; Nguyen Thi Kieu TRANG ; Hoon YOO
International Journal of Oral Biology 2019;44(3):108-114
In the present study, rutile phase titanium dioxide nanoparticles (R-TiO₂ NPs) were prepared by hydrolysis of titanium tetrachloride in an aqueous solution followed by calcination at 900℃. The composition of R-TiO₂ NPs was determined by the analysis of X-ray diffraction data, and the characteristic features of R-TiO₂ NPs such as the surface functional group, particle size, shape, surface topography, and morphological behavior were analyzed by Fourier-transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential measurements. The average size of the prepared R-TiO₂ NPs was 76 nm, the surface area was 19 m²/g, zeta potential was −20.8 mV, and average hydrodynamic diameter in dimethyl sulfoxide (DMSO)–H₂O solution was 550 nm. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphological observations revealed that R-TiO₂ NPs were cytocompatible with oral cancer cells, with no inhibition of cell growth and proliferation. This suggests the efficacy of R-TiO₂ NPs for the aesthetic white pigmentation of teeth.
Dimethyl Sulfoxide
;
Dynamic Light Scattering
;
Hydrodynamics
;
Hydrolysis
;
Microscopy, Electron, Scanning
;
Microscopy, Electron, Transmission
;
Mouth Neoplasms
;
Nanoparticles
;
Particle Size
;
Pigmentation
;
Spectrometry, X-Ray Emission
;
Spectrum Analysis
;
Titanium
;
Tooth
;
X-Ray Diffraction
7.Surface characterization of calcium phosphate coating formed on chitosan and alkali-treaDted titanium metal
Kyung Hee PARK ; Woon Young LEE ; Ho Ju SONG ; Yeong Joon PARK
Korean Journal of Dental Materials 2019;46(1):33-42
The calcium phosphate coating on various pretreated metals was prepared by soaking in modified simulated body fluid (m-SBF) solution. The coating structure and its surface morphologies were determined by x-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The results revealed significant differences in morphology and composition of the calcium phosphate coatings with and without chitosan and NaOH-pretreated commercially pure titanium (cp-Ti) substrate. The calcium phosphates formed on chitosan coated-Ti pretreated with NaOH were ~ 350 nm-sized resulting in strong bonding of the apatite layer with the substrates and a uniform gradient of stress transfer from coating materials to the Ti-substrate. After NaOH pretreatment, the hydroxyl groups bind to Ca²⁺ to attract PO₄³⁻ anions, eventually resulting in a continuous layer of calcium phosphate on chitosan coated-Ti substrate during immersion in m-SBF solution. The chitosan coated-Ti showed hydrophobic surface while NaOH pretreatment resulted in maximum hydrophilicity to the Ti substrate. Due to improved wettability of Ti by NaOH pretreatment before chitosan coating, aggregation of calcium phosphate was prevented and size-controlled composite materials were obtained.
Anions
;
Body Fluids
;
Calcium Phosphates
;
Calcium
;
Chitosan
;
Clothing
;
Hydrophobic and Hydrophilic Interactions
;
Immersion
;
Metals
;
Microscopy, Electron, Scanning
;
Spectroscopy, Fourier Transform Infrared
;
Titanium
;
Wettability
;
X-Ray Diffraction
8.Effects of different finishing/polishing protocols and systems for monolithic zirconia on surface topography, phase transformation, and biofilm formation
Hang Nga MAI ; Su Hyung HONG ; Sung Hun KIM ; Du Hyeong LEE
The Journal of Advanced Prosthodontics 2019;11(2):81-87
PURPOSE: The purpose of this study was to evaluate the effects of various protocols and systems for finishing and polishing monolithic zirconia on surface topography, phase transformation, and bacterial adhesion. MATERIALS AND METHODS: Three hundred monolithic zirconia specimens were fabricated and then treated with three finishing and polishing systems (Jota [JO], Meisinger [ME], and Edenta [ED]) using four surface treatment protocols: coarse finishing alone (C); coarse finishing and medium polishing (CM); coarse finishing and fine polishing (CF); and coarse finishing, medium polishing, and fine polishing (CMF). Surface roughness, crystal phase transformation, and bacterial adhesion were evaluated using atomic force microscopy, X-ray diffraction, and streptococcal biofilm formation assay, respectively. One-way and two-way analysis of variance with Tukey post hoc tests were used to analyze the results (α=.05). RESULTS: In this study, the surface treatment protocols and systems had significant effects on the resulting roughness. The CMF protocol produced the lowest roughness values, followed by CM and CF. Use of the JO system produced the lowest roughness values and the smallest biofilm mass, while the ME system produced the smallest partial transformation ratio. The ED group exhibited the highest roughness values, biofilm mass, and partial transformation ratio. CONCLUSION: Stepwise surface treatment of monolithic zirconia, combined with careful polishing system selection, is essential to obtaining optimal microstructural and biological surface results.
Bacterial Adhesion
;
Biofilms
;
Clinical Protocols
;
Dental Polishing
;
Microscopy, Atomic Force
;
X-Ray Diffraction
9.Alendronate-Anionic Clay Nanohybrid for Enhanced Osteogenic Proliferation and Differentiation
Huiyan PIAO ; Myung Hun KIM ; Meiling CUI ; Goeun CHOI ; Jin Ho CHOY
Journal of Korean Medical Science 2019;34(5):e37-
BACKGROUND: Alendronate (AL), a drug for inhibiting osteoclast-mediated bone-resorption, was intercalated into an inorganic drug delivery nanovehicle, layered double hydroxide (LDH), to form a new nanohybrid, AL-LDH, with 1:1 heterostructure along the crystallographic C-axis. Based on the intercalation reaction strategy, the present AL-LDH drug delivery system (DDS) was realized with an enhanced drug efficacy of AL, which was confirmed by the improved proliferation and osteogenic differentiation of osteoblast-like cells (MG63). METHODS: The AL-LDH nanohybrid was synthesized by conventional ion-exchange reaction and characterized by powder X-ray diffraction (PXRD), high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. Additionally, in vitro efficacy tests, such as cell proliferation and alkaline phosphatase (ALP) activity, were analyzed. RESULTS: The AL was successfully intercalated into LDH via ion-exchange reaction, and thus prepared AL-LDH DDS was X-ray single phasic and chemically well defined. The accumulated AL content in MG63 cells treated with the AL-LDH DDS nanoparticles was determined to be 10.6-fold higher than that within those treated with the intact AL after incubation for 1 hour, suggesting that intercellular permeation of AL was facilitated thanks to the hybridization with drug delivery vehicle, LDH. Furthermore, both in vitro proliferation level and ALP activity of MG63 treated with the present hybrid drug, AL-LDH, were found to be much more enhanced than those treated with the intact AL. This is surely due to the fact that LDH could deliver AL drug very efficiently, although LDH itself does not show any effect on proliferation and osteogenic differentiation of MG63 cells. CONCLUSION: The present AL-LDH could be considered as a promising DDS for improving efficacy of AL.
Alendronate
;
Alkaline Phosphatase
;
Cell Proliferation
;
Drug Delivery Systems
;
Fourier Analysis
;
In Vitro Techniques
;
Microscopy, Electron, Transmission
;
Nanoparticles
;
Spectrum Analysis
;
X-Ray Diffraction
10.Bleaching of stained resin using nitrogen doped-TiO₂ nanoparticles
Keun MOON ; Sang Bong JUNG ; Hyo Joung SEOL ; Jung Sook KANG ; Yong Hoon KWON
Korean Journal of Dental Materials 2019;46(3):175-184
There has been increasing use of the H₂O₂-based teeth bleaching agents. The purpose of this study was to evaluate the bleaching effectiveness of the laser irradiation combined with nitrogen doped-TiO₂ nanoparticles (NPs) on the stained resin. Nitrogen (N) doped-TiO₂ NPs were prepared under sol-gel method. Light absorbance, X-ray diffraction patterns of NPs, and bleaching of methylene blue and stained resins were evaluated. For bleaching of stained resin, NPs-containing gel was used. For irradiation, light of two different wavelengths was used. Unlike TiO₂, N-TiO₂ showed high absorbance after 400 nm. N-TiO₂, which have used TiN as a precursor, showed a new rutile phase at the TiN structure. For methylene blue solution, N-TiO₂ with 3% H₂O₂ resulted in the greatest absorbance decrease after laser irradiation regardless of wavelength. For stained resin test, N-TiO₂ with 3% H₂O₂ resulted in the greatest color difference after laser irradiation, followed by group that used N-TiO₂ without 3% H₂O₂.
Methods
;
Methylene Blue
;
Nanoparticles
;
Nitrogen
;
Tin
;
Tooth Bleaching Agents
;
X-Ray Diffraction

Result Analysis
Print
Save
E-mail