1.Effect of Yang-Reinforcing and Blood-Activating Therapy on the Long-Term Prognosis for Dilated Cardio-myopathy Patients with Yang Deficiency and Blood Stasis Syndrome:A Retrospective Cohort Study
Shiyi TAO ; Jun LI ; Lintong YU ; Ji WU ; Yuqing TAN ; Xiao XIA ; Fuyuan ZHANG ; Tiantian XUE ; Xuanchun HUANG
Journal of Traditional Chinese Medicine 2026;67(1):53-59
ObjectiveTo evaluate the impact of yang-reinforcing and blood-activating therapy on the long-term prognosis for patients with dilated cardiomyopathy (DCM) of yang deficiency and blood stasis syndrome. MethodsA retrospective cohort study was conducted involving 371 DCM patients with yang deficiency and blood stasis syndrome. The yang-reinforcing and blood-activating therapy was defined as the exposure factor. Patients were categorized into exposure group (186 cases) and non-exposure group (185 cases) according to whether they received yang-reinforcing and blood-activating therapy combined with conventional western medicine for 6 months or longer. The follow-up period was set at 48 months, and the Kaplan-Meier survival analysis was used to assess the cumulative incidence of major adverse cardiovascular events (MACE) in both groups. Cox regression analysis was used to explore the impact of yang-reinforcing and blood-activating therapy on the risk of MACE, and subgroup analysis was performed. Changes in traditional Chinese medicine (TCM) syndrome score, left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular end-diastolic diameter (LVEDD), and Minnesota Living with Heart Failure Questionnaire (MLHFQ) score were compared between groups at the time of first combined use of yang-reinforcing and blood-activating therapy (before treatment) and 1 year after receiving the therapy (after treatment). ResultsMACE occurred in 31 cases (16.67%) in the exposure group and 47 cases (25.41%) in the non-exposure group. The cumulative incidence of MACE in the exposure group was significantly lower than that in the non-exposure group [HR=0.559, 95%CI(0.361,0.895), P=0.014]. Cox regression analysis showed that yang-reinforcing and blood-activating therapy was an independent factor for reducing the risk of MACE in DCM patients [HR=0.623, 95%CI(0.396,0.980), P=0.041], and consistent results were observed in different subgroups. Compared with pre-treatment, the exposure group showed decreased TCM syndrome score and MLHFQ score, reduced LVEDD, and increased LVEF and LVFS after treatment (P<0.05); in the non-exposure group, TCM syndrome score decreased, LVEF and LVFS increased, and LVEDD reduced after treatment (P<0.05). After treatment, the exposure group had higher LVEF and LVFS, smaller LVEDD, and lower TCM syndrome score and MLHFQ score compared with the non-exposure group (P<0.05). ConclusionCombining yang-reinforcing and blood-activating therapy with conventional western medicine can reduce the risk of MACE in DCM patients with yang deficiency and blood stasis syndrome, meanwhile improving their clinical symptoms, cardiac function, and quality of life.
2.Mechanism of pachymic acid in ameliorating renal injury in pregnancy induced hypertension rats by regulating the Sirt1/PGC‑1α pathway
Junjiang ZHU ; Jincheng LIN ; Jiajian WU ; Yi ZENG ; Jun HU ; Min LI ; Hongying LIU ; Jinfen LI
China Pharmacy 2026;37(2):186-191
OBJECTIVE To investigate the mechanism of pachymic acid on renal injury in pregnancy induced hypertension (PIH) rats by regulating the silent information regulator transcript 1/peroxisome proliferator-activated receptor γ coactivator-1α (Sirt1/PGC-1α) pathway. METHODS Pregnant SD rats were prepared by co-caging and PIH model was induced using N-nitro-L- arginine methyl ester (L-NAME) method. PIH rats were randomly divided into model group, L-pachymic acid (low-dose pachymic acid, 10 mg/kg) group, H-pachymic acid (high-dose pachymic acid, 20 mg/kg) group, and H-pachymic acid+EX527 (20 mg/kg pachymic acid+10 mg/kg EX527) group, with 6 rats in each group. Another 6 normal pregnant rats were selected as blank group. Each group was given relevant medicine or solvent intragastrically or intraperitoneally daily, once a day, for 28 consecutive days. After the last administration, 24 h urinary protein and tail artery systolic blood pressure (SBP) were measured in pregnant rats from each group, along with the levels of serum creatinine (Scr), blood urea nitrogen (BUN),uric acid (UA), and cystatin C (Cys-C). The contents of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and 8-hydroxy-2′-deoxyguanosine (8-OHdG) in renal tissue, as well as the mRNA and protein expression levels of Sirt1 and PGC-1α, were also determined. Meanwhile, renal histopathological changes in rats from each group were evaluated using hematoxylin-eosin (HE) staining and periodic acid-Schiff (PAS) staining. RESULTS Compared with model group, L-pachymic acid group and H-pachymic acid group exhibited significant decreases in 24 h urine protein quantification, tail artery SBP, Scr, BUN, UA, Cys-C levels, glomerulosclerosis index score of renal tissue, renal tubular injury score, the percentage of PAS positive area, MDA and 8-OHdG (P<0.05). Conversely, the contents of SOD and GSH-Px, along with the mRNA and protein expression levels of Sirt1 and PGC-1α, were significantly increased (P<0.05). Moreover, these improvements were more pronounced in H-pachymic acid group (P<0.05). Compared with H-pachymic acid group, the aforementioned indicators in pregnant rats from the H-pachymic acid+EX527 group showed significant reversal (P<0.05). CONCLUSIONS Pachymic acid significantly ameliorates renal injury induced by PIH in rats, potentially through activation of the Sirt1/PGC-1α pathway.
3.Severity Assessment Parameters and Diagnostic Technologies of Obstructive Sleep Apnea
Zhuo-Zhi FU ; Ya-Cen WU ; Mei-Xi LI ; Ping-Ping YIN ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(1):147-161
Obstructive sleep apnea (OSA) is an increasingly widespread sleep-breathing disordered disease, and is an independent risk factor for many high-risk chronic diseases such as hypertension, coronary heart disease, stroke, arrhythmias and diabetes, which is potentially fatal. The key to the prevention and treatment of OSA is early diagnosis and treatment, so the assessment and diagnostic technologies of OSA have become a research hotspot. This paper reviews the research progresses of severity assessment parameters and diagnostic technologies of OSA, and discusses their future development trends. In terms of severity assessment parameters of OSA, apnea hypopnea index (AHI), as the gold standard, together with the percentage of duration of apnea hypopnea (AH%), lowest oxygen saturation (LSpO2), heart rate variability (HRV), oxygen desaturation index (ODI) and the emerging biomarkers, constitute a multi-dimensional evaluation system. Specifically, the AHI, which measures the frequency of sleep respiratory events per hour, does not fully reflect the patients’ overall sleep quality or the extent of their daytime functional impairments. To address this limitation, the AH%, which measures the proportion of the entire sleep cycle affected by apneas and hypopneas, deepens our understanding of the impact on sleep quality. The LSpO2 plays a critical role in highlighting the potential severe hypoxic episodes during sleep, while the HRV offers a different perspective by analyzing the fluctuations in heart rate thereby revealing the activity of the autonomic nervous system. The ODI provides a direct and objective measure of patients’ nocturnal oxygenation stability by calculating the number of desaturation events per hour, and the biomarkers offers novel insights into the diagnosis and management of OSA, and fosters the development of more precise and tailored OSA therapeutic strategies. In terms of diagnostic techniques of OSA, the standardized questionnaire and Epworth sleepiness scale (ESS) is a simple and effective method for preliminary screening of OSA, and the polysomnography (PSG) which is based on recording multiple physiological signals stands for gold standard, but it has limitations of complex operations, high costs and inconvenience. As a convenient alternative, the home sleep apnea testing (HSAT) allows patients to monitor their sleep with simplified equipment in the comfort of their own homes, and the cardiopulmonary coupling (CPC) offers a minimal version that simply analyzes the electrocardiogram (ECG) signals. As an emerging diagnostic technology of OSA, machine learning (ML) and artificial intelligence (AI) adeptly pinpoint respiratory incidents and expose delicate physiological changes, thus casting new light on the diagnostic approach to OSA. In addition, imaging examination utilizes detailed visual representations of the airway’s structure and assists in recognizing structural abnormalities that may result in obstructed airways, while sound monitoring technology records and analyzes snoring and breathing sounds to detect the condition subtly, and thus further expands our medical diagnostic toolkit. As for the future development directions, it can be predicted that interdisciplinary integrated researches, the construction of personalized diagnosis and treatment models, and the popularization of high-tech in clinical applications will become the development trends in the field of OSA evaluation and diagnosis.
4.Action Mechanism of Resolving Dampness and Phlegm of Pinelliae Rhizoma Praeparatum Based on Interconnection Between Lung and Large Intestine
Xingbao TAO ; Chentao ZHAO ; Xiaofu ZHU ; Hao WU ; Jun HE ; Weiguo CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):122-131
ObjectiveTo investigate the effects of Pinelliae Rhizoma Praeparatum (PRP) on lung tissue, gut microbiota, and short-chain fatty acid (SCFA) metabolism in a model of mice with cold fluid retention in the lung and explore its mechanism of action in resolving dampness and phlegm based on the interconnection between the lung and large intestine. MethodsFifty female ICR mice were randomly divided into a normal group, model group, positive control group (Xiaoqinglong granules, 6.5 g·kg-1), and high-dose and low-dose PRP decoction groups (3.0, 1.5 g·kg-1), with 10 mice in each group. A model of mice with cold fluid retention in the lung was established using ovalbumin (OVA) sensitization combined with cold-water immersion. Drug interventions were conducted from day 18 to day 33 for 15 consecutive days. The airway resistance value of the mice was measured using a non-invasive pulmonary function analyzer. Phlegm-resolving effects were evaluated via a microplate reader. Eosinophil and neutrophil counts in bronchoalveolar lavage fluid (BALF) were analyzed using an automated hematology analyzer. Serum levels of total immunoglobulin E (IgE), interferon-γ (IFN-γ), interleukin-4 (IL-4), and BALF levels of interleukin-6 (IL-6) and interleukin-8 (IL-8) were quantified by enzyme-linked immunosorbent assay (ELISA). Lung histopathology was assessed using hematoxylin-eosin (HE) staining. Immunohistochemistry (IHC) was employed to detect mucin 5AC (MUC5AC) and aquaporin 5 (AQP5) protein expression in lung tissue. Gut microbiota composition was analyzed via agarose gel electrophoresis, and fecal SCFA levels were measured by gas chromatography-mass spectrometry (GC-MS). ResultsCompared with the normal group, the model group exhibited significantly increased airway resistance value (RI) (P<0.05), elevated eosinophil and neutrophil counts and IL-6 and IL-8 levels in BALF (P<0.05), increased serum IgE and IL-4 levels (P<0.05), with reduced IFN-γ levels (P<0.05). It also showed thickened bronchial walls, widened alveolar septa, narrowed lumens, and mucus plugs in lung tissue, upregulated MUC5AC protein expression and downregulated AQP5 protein expression (P<0.05), decreased relative abundance of beneficial gut microbiota (Firmicutes, Clostridia, Clostridiales, Lactobacillaceae, and Lactobacillus), and increased abundance of harmful microbiota (Bacteroidetes, Bacteroidia, Bacteroidales, Muribaculaceae, and Muribaculum). In addition, the model group presented reduced fecal SCFA levels (acetate, propionate, and butyrate) (P<0.05). After the intervention of PRP decoction, compared to the model group, all drug administration groups showed decreased RI (P<0.05), increased phenol red excretion, declined eosinophil and neutrophil counts and IL-6, IL-8, IgE, and IL-4 levels (P<0.05), and improved IFN-γ levels (P<0.05) and lung pathology improved. The MUC5AC protein expression decreased (P<0.05), and the AQP5 protein expression increased (P<0.05). The disorder of gut microbiota was improved, and the diversity of gut microbiota was restored, with a significantly increased relative abundance ratio of beneficial microbiota (P<0.05) and a significantly reduced relative abundance ratio of harmful microbiota (P<0.05). The SCFA levels (acetate, propionate, and butyrate) increased (P<0.05). The efficacy indicators of serum inflammatory factors (IgE, IL-4, and IFN-γ), phlegm-resolving effect, airway resistance, total pathological score, and the protein expression of MUC5AC and AQP5 were correlated with gut microbiota and SCFAs. ConclusionPRP decoction alleviates cold-phlegm syndrome by modulating the gut-lung axis, promoting beneficial gut microbiota, enhancing SCFA production, restoring the balance of gut microbiota, and suppressing respiratory inflammation. This study provides novel insights into the TCM theory of interconnection between the lung and large intestine.
5.Traditional Chinese Medicine Prevents and Treats Cerebral Ischemia-reperfusion Injury by Regulating Nrf2 Signaling Pathway: A Review
Siqing WU ; Jun WANG ; Mingsan MIAO ; Jinxin MIAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):286-295
Cerebral ischemia-reperfusion injury (CIRI), a common cerebrovascular disease damage, has garnered increasing attention in the treatment of acute ischemic stroke. Restoration of blood flow and reperfusion to ischemic brain tissue is the key to treatment, while this process often triggers a variety of complex pathophysiological responses, such as oxidative stress, apoptosis, inflammation, mitochondrial dysfunction, angiogenic abnormalities, and disruption of the blood-brain barrier. These responses not only impede the recovery of neurological functions but also may lead to damage or even death of nerve cells, seriously affecting the neurological function and quality of survival of patients. As an important transcription factor, nuclear factor E2-related factor 2 (Nrf2) has the pharmacological effect of alleviating CIRI by regulating antioxidant, anti-apoptosis, anti-inflammation, mitochondrial function, angiogenesis, and blood-brain barrier pathways. This reveals the potential mechanism of traditional Chinese medicine (TCM) in intervening in CIRI and shows the potential of Nrf2 as a new pathway for dealing with ischemia stroke. This paper comprehensively analyzes the effects and mechanisms of active components and compound prescription of TCM in treating CIRI by modulating the Nrf2 signaling pathway, while pointing out the shortcomings of available studies and proposing a multidimensional exploration. This review aims to provide patients with more comprehensive, safe, and effective therapeutic regimens and improve the quality of survival and prognosis of patients. In addition, in-depth research on TCM should be promoted to reveal the potential mechanism for treating CIRI, providing new ideas and directions for the development of novel therapeutic drugs and methods.
6.Shenqi Dihuang Decoction Improves Renal Function in Mouse Model of Diabetic Kidney Disease by Inhibiting Arachidonic Acid-related Ferroptosis Via ACSL4/LPCAT3/ALOX15 Axis
Yuantao WU ; Zhibin WANG ; Xinying FU ; Xiaoling ZOU ; Wenxiao HU ; Yixian ZOU ; Jun FENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):140-149
ObjectiveTo investigate the therapeutic effects and mechanism of Shenqi Dihuang decoction (SQDHD) on diabetic kidney disease (DKD), with a focus on its impact on arachidonic acid-related ferroptosis. MethodsSixty C57BL/6 mice were allocated into a normal group (n=10) and a modeling group (n=50), with 43 mice successfully modeled. The successfully modeled mice were further allocated into model, low-, medium-, and high-dose (4.68, 9.36, and 18.72 g·kg-1, respectively) SQDHD, and dapagliflozin (0.13 mg·kg-1) groups. The drug treatment groups were administrated with corresponding agents by gavage, and the normal and model groups were administrated with equal volumes of normal saline by gavage. An electronic balance and a glucometer were used to monitor the body weight and fasting blood glucose level from the tail tip, respectively. Serum creatinine (Scr) and blood urea nitrogen (BUN) levels were measured by enzyme-linked immunosorbent assay (ELISA). Histopathological changes in the renal tissue were assessed by hematoxylin-eosin staining, Masson staining, and periodic acid-Schiff (PAS) staining. The fluorescence intensity of reactive oxygen species (ROS) in frozen sections was observed by an inverted fluorescence microscope to evaluate the levels of ferrous ions (Fe2+) and lipid peroxidation in the renal tissue. Immunofluorescence staining of glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) in the renal tissue was performed to detect their localization and expression. Western blot was employed to assess the expression levels of key ferroptosis proteins such as GPX4 and cystine/glutamate antiporter (xCT), as well as the arachidonic acid metabolic pathway-related proteins, including ACSL4, lysophosphatidylcholine acyltransferase 3 (LPCAT3), and arachidonate 15-lipoxygenase (ALOX15). Real-time PCR was employed to measure the mRNA levels of key ferroptosis proteins, including solute carrier family 7 member 11 (SLC7A11) and GPX4, as well as arachidonic acid metabolism-related factors (ACSL4, LPCAT3, and ALOX15) in the renal tissue. ResultsCompared with the normal group, DKD model mice exhibited a decrease in body weight (P<0.01), increases in levels of blood glucose (P<0.01), 24-hour urinary protein, Scr, and BUN (P<0.01), along with severe pathological changes, such as mesangial cell proliferation, basement membrane thickening, tubular atrophy, and interstitial inflammatory cell infiltration. In addition, the modeling elevated the levels of Fe2+, MDA, LPO, and ROS (P<0.01), lowered the GPX4 and xCT levels (P<0.01), raised the ACSL4, LPCAT3, and ALOX15 levels (P<0.01), down-regulated the mRNA levels of GPX4 and SLC7A11 (P<0.01), and up-regulated the mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01) in the renal tissue. Compared with the model group, low-, medium-, and high-dose SQDHD groups and the dapagliflozin group showed an increase in body weight (P<0.01), decreases in levels of blood glucose (P<0.01), 24-hour urinary protein, and Scr (P<0.01), alleviated pathological changes in glomeruli and tubules, and reduced degree of glomerular and tubular fibrosis. The high-dose SQDHD group and the dapagliflozin group showed reductions in Fe2+, MDA, LPO, and ROS levels (P<0.01). The medium- and high-dose SQDHD groups and the dapagliflozin group exhibited increased levels of GPX4 and xCT (P<0.01), decreased levels of ACSL4, LPCAT3, and ALOX15 (P<0.05, P<0.01), and down-regulated mRNA levels of ACSL4, LPCAT3, and ALOX15 (P<0.01). ConclusionSQDHD ameliorates DKD by inhibiting ferroptosis potentially by reducing iron ion levels, inhibiting lipid peroxidation, up-regulating GPX4 expression, and down-regulating ACSL4 expression. This study provides new insights and a theoretical basis for the treatment of DKD with traditional Chinese medicine and identifies potential targets for developing novel therapeutics for DKD.
7.Effect and mechanism of BYL-719 on Mycobacterium tuberculosis-induced differentiation of abnormal osteoclasts
Jun ZHANG ; Jian GUO ; Qiyu JIA ; Lili TANG ; Xi WANG ; Abudusalamu·Alimujiang ; Tong WU ; Maihemuti·Yakufu ; Chuang MA
Chinese Journal of Tissue Engineering Research 2025;29(2):355-362
BACKGROUND:The phosphatidylinositol 3-kinase/protein kinase(PI3K/AKT)signaling pathway plays a pivotal role in regulating osteoclast activation,which is essential for maintaining bone homeostasis.Bone destruction in osteoarticular tuberculosis is caused by aberrant osteoclastogenesis induced by Mycobacterium tuberculosis infection.However,the role of the PI3K signaling pathway in Mycobacterium tuberculosis-induced aberrant osteoclastogenesis remains unclear. OBJECTIVE:To investigate the effects and mechanisms of the PI3K/AKT signaling pathway inhibitor BYL-719 on aberrant osteoclastogenesis induced by Mycobacterium tuberculosis. METHODS:RAW264.7 cells were infected with bovine Mycobacterium tuberculosis bacillus calmette-cuerin vaccine,and Ag85B was used for cellular immunofluorescence staining.The cell counting kit-8 assay was employed to determine the safe concentration of BYL-719.There were four groups in the experiment:blank control group,BYL-719 group,BCG group,and BCG+BYL-719 group.Under the induction of receptor activator of nuclear factor kappa-B ligand,the effects of BYL-719 on post-infection osteoclast differentiation and fusion were explored through tartrate-resistant acid phosphatase staining and phalloidin staining.RT-PCR and western blot were used to detect the expression of osteoclast-related genes and proteins,and further investigate the mechanism of action. RESULTS AND CONCLUSION:Immunofluorescence staining showed that RAW264.7 cells phagocytosed Mycobacterium tuberculosis.Cell counting kit-8 data indicated that 40 nmol/L BYL-719 was non-toxic to cells.Tartrate-resistant acid phosphatase staining and phalloidin staining showed that BYL-719 inhibited the generation and fusion ability of osteoclasts following infection.RT-PCR and western blot results also indicated that BYL-719 suppressed the upregulation of osteoclast-specific genes(including c-Fos,NFATc1,matrix metalloproteinase 9,and CtsK)induced by Mycobacterium tuberculosis infection(P<0.05).Western blot and immunofluorescence staining revealed that BYL-719 inhibited excessive osteoclast differentiation induced by Mycobacterium tuberculosis by downregulating the expression of IκBα-p65.To conclude,BYL-719 inhibits aberrant osteoclastogenesis induced by Mycobacterium tuberculosis through the downregulation of IκBα/p65.Therefore,the IκBα/p65 signaling pathway is a potential therapeutic target for osteoarticular tuberculosis,and BYL-719 holds potential value for the preventing and amelioration of bone destruction in osteoarticular tuberculosis.BYL-719 has the potential to prevent and ameliorate bone destruction in osteoarticular tuberculosis.
8.NAD+ Ameliorates Endothelial Dysfunction in Hypertension via Activation of SIRT3/IDH2 Signal Pathway
Yumin QIU ; Xi CHEN ; Jianning ZHANG ; Zhangchi LIU ; Qiuxia ZHU ; Meixin ZHANG ; Jun TAO ; Xing WU
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):70-80
ObjectiveTo investigate the effect of nicotinamide adenine dinucleotide on vascular endothelial injury in hypertension and its molecular mechanism. MethodsC57BL/6J mice were randomly divided into saline group (Saline) and hypertension group (Ang Ⅱ, which were infused with Ang Ⅱ via subcutaneously implanted osmotic pumps), and supplemented daily with nicotinamide mononucleotide (300 mg/kg), a precursor of NAD+. Blood pressure, endothelial relaxation function and pulse wave velocity were measured after 4 weeks. Wound healing assay and adhesion assay were used to evaluate the function of endothelial cells in vitro. mtROS levels were detected by immunofluorescence staining. RT-PCR was used to detect the mRNA expression of mtDNA, SIRT3 and isocitrate dehydrogenase 2 (IDH2). 8-hydroxy-2'-deoxyguanosine levels were detected by enzyme-linked immunosorbent assay. The protein expression levels of p-eNOS, eNOS, SIRT3 and IDH2 were detected by Western blot. ResultsNMN supplementation reduced blood pressure (P<0.001) and improved endothelial function and arterial stiffness (P<0.001) in hypertensive mice. In vitro, NMN improved endothelial function in AngII-stimulated endothelial cells (P<0.05) and attenuated mitochondrial oxidative stress levels (P<0.001). Mechanistically, NMN elevated SIRT3 activity (P<0.001), which subsequently enhanced IDH activity (P<0.001) and reduced oxidative stress levels in endothelial cells. Conversely, knockdown of IDH2 would reverse the effect of SIRT3 in improving endothelial function (P<0.001). ConclusionNAD+ lowers blood pressure and enhances vascular function in hypertension by reducing the level of oxidative stress in endothelial cells through activation of the SIRT3/IDH2 signal pathway.
9.Investigation of radon exposure hazard awareness among non-uranium miners in Chongqing, China
Jinghua ZHOU ; Wei LI ; Mengyun WU ; Kui LI ; Xiuhong TAN ; Jun SUN
Chinese Journal of Radiological Health 2025;34(1):41-45
Objective To investigate the awareness of radon exposure hazards among non-uranium miners in Chongqing, China. Methods A survey was conducted among 177 male miners from eight non-uranium metal mines in Chongqing to collect data on basic information, personal habits, and the rate of radon awareness. Factors affecting radon awareness were analyzed using chi-square test and logistic regression model. Results The awareness rate of radon among miners was 23.73%. The chi-square test indicated significant difference in the radon awareness rate among miners with different levels of education (χ2 = 10.28, P < 0.05), while there was no significant difference across different ages, years of work, labor relations, job categories, and types of miners (P > 0.05). Binary logistic regression analysis showed that a college (junior college) or higher level of education, a high school level of education, and working in mines were factors affecting the radon awareness among miners (χ2 = 4.030, 9.150, 11.776, P < 0.05). Conclusion Miners lack awareness of radon, and there is an urgent need to strengthen education and propaganda regarding the hazards of radon.
10.Study on anti-atherosclerosis mechanism of blood components of Guanxin Qiwei tablets based on HPLC-Q-Exactive-MS/MS and network pharmacology
Yuan-hong LIAO ; Jing-kun LU ; Yan NIU ; Jun LI ; Ren BU ; Peng-peng ZHANG ; Yue KANG ; Yue-wu WANG
Acta Pharmaceutica Sinica 2025;60(2):449-458
The analysis presented here is based on the blood components of Guanxin Qiwei tablets, the key anti-atherosclerosis pathway of Guanxin Qiwei tablets was screened by network pharmacology, and the anti-atherosclerosis mechanism of Guanxin Qiwei tablets was clarified and verified by cell experiments. HPLC-Q-Exactive-MS/MS technique was used to analyze the components of Guanxin Qiwei tablets into blood, to determine the precise mass charge ratio of the compounds, and to conduct a comprehensive analysis of the components by using secondary mass spectrometry fragments and literature comparison. Finally, a total of 42 components of Guanxin Qiwei tablets into blood were identified. To better understand the interactions, we employed the Swiss Target Prediction database to predict the associated targets. Atherosclerosis (AS) disease targets were searched in disease databases Genecard, OMIM and Disgent, and 181 intersection targets of disease targets and component targets were obtained by Venny 2.1.0 software. Protein interactions were analyzed by String database. The 32 core targets were selected by Cytscape software. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed in DAVID database. It was found that the anti-atherosclerosis pathways of Guanxin Qiwei tablets mainly include lipid metabolism and atherosclerosis and AGE-RAGE signaling pathway in diabetic complications and other signal pathways. The core targets and the core compounds were interlinked, and it was found that cryptotanshinone and tanshinone ⅡA in Guanxin Qiwei tablets were well bound to TNF, PPAR

Result Analysis
Print
Save
E-mail