1.Exploration in Mechanism of Sini San for Inhibiting Ferroptosis and Ameliorating Isoprenaline-induced Myocardial Infarction in Mice Based on Bioinformatics and Experimental Validation
Shupeng LIU ; Zhiguang HAN ; Jiaying LI ; Jiayao XU ; Weihao GAO ; Yanping WU ; Guangguo BAN ; Yongmin LI ; Hongxia YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):67-77
ObjectiveTo explore the mechanism by which Sini San (SNS) inhibits ferroptosis, alleviates inflammation and myocardial injury, and improves myocardial infarction (MI). MethodsThe active ingredients of SNS were obtained by searching the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) database, its target sites were predicted using the SwissTargetPrediction Database, and the core components were screened out using the CytoNCA plug-in. The targets of MI and ferroptosis were obtained by using GeneCards, Online Mendelian Inheritance in Man (OMIM) database, DrugBank, Therapeutic Target Database (TTD), FerrDb database and literature review, respectively. The intersection of these targets of SNS-MI-ferroptosis was plotted as a Venn diagram. The protein-protein interaction (PPI) network was constructed using the STRING database, and the visualization graph was prepared using Cytoscape. The core targets were screened out using the CytoNCA plug-in, and the biological functions were clustered by the MCODE plug-in. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the David database. Molecular docking was performed using AutoDock and visualized with PyMOL2.5.2. The Kunming mice were randomly divided into the control group, the model group, the SNS group, and the trimetazidine (TMZ) group. The mice were subcutaneously injected with isoprenaline (ISO, 5 mg·kg-1·d-1) to establish an MI model. The drug was continuously intervened for 7 days. The ST-segment changes were recorded by electrocardiogram (ECG), and the tissue morphology changes were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte ferroptosis was investigated by transmission electron microscopy. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA) levels were detected by biochemical assay. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of interleukin (IL)-6 and 4-hydroxynonenal (4-HNE). Immunohistochemical staining was employed to detect IL-6 and phosphorylated signal transducer and transcription activator 3 (p-STAT3) in cardiac tissues. Western blot was used to detect STAT3 and p-STAT3 in cardiac tissues. Real-time PCR was used to detect the levels of IL-6, IL-18, solute carrier family 7 member 11 (SLC7A11), arachidonic acid 15-lipoxygenase (ALOX15), and glutathione peroxidase 4 (GPx4) in cardiac tissues. ResultsA total of 121 active ingredients of SNS were obtained, and 58 potential targets of SNS in the treatment of MI by regulating ferroptosis were screened. The three protein modules with a score5 were mainly related to the inflammatory response. The GO function was mainly related to inflammation, and KEGG enrichment analysis showed that SNS mainly regulated ferroptosis- and inflammation- related signaling pathways. Molecular docking indicated that the core component had a higher binding force to the target site. Animal experiments confirmed that SNS reduced the level of p-STAT3 (P0.01), down-regulated the expression of ALOX15 mRNA (P0.01), up-regulated the level of serum GSH, and the expressions of SLC7A11 and GPx4 mRNA, reduced MDA and 4-HNE levels (P0.05, P0.01). Additionally, SNS improved the mitochondrial injury induced by cardiomyocyte ferroptosis, reduced the area of MI, alleviated inflammation and myocardial injury, lowered the levels of serum CK, CK-MB, LDH, IL-6, and the mRNA expression levels of IL-16 and IL-18 (P0.05), and improved ST segment elevation. ConclusionSNS can reduce ISO-induced STAT3 phosphorylation levels, inhibit ferroptosis in cardiomyocytes, alleviate inflammation and myocardial injury, thereby improving MI.
2.Exploration in Mechanism of Sini San for Inhibiting Ferroptosis and Ameliorating Isoprenaline-induced Myocardial Infarction in Mice Based on Bioinformatics and Experimental Validation
Shupeng LIU ; Zhiguang HAN ; Jiaying LI ; Jiayao XU ; Weihao GAO ; Yanping WU ; Guangguo BAN ; Yongmin LI ; Hongxia YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):67-77
ObjectiveTo explore the mechanism by which Sini San (SNS) inhibits ferroptosis, alleviates inflammation and myocardial injury, and improves myocardial infarction (MI). MethodsThe active ingredients of SNS were obtained by searching the Traditional Chinese Medicine System Pharmacology Platform (TCMSP) database, its target sites were predicted using the SwissTargetPrediction Database, and the core components were screened out using the CytoNCA plug-in. The targets of MI and ferroptosis were obtained by using GeneCards, Online Mendelian Inheritance in Man (OMIM) database, DrugBank, Therapeutic Target Database (TTD), FerrDb database and literature review, respectively. The intersection of these targets of SNS-MI-ferroptosis was plotted as a Venn diagram. The protein-protein interaction (PPI) network was constructed using the STRING database, and the visualization graph was prepared using Cytoscape. The core targets were screened out using the CytoNCA plug-in, and the biological functions were clustered by the MCODE plug-in. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the David database. Molecular docking was performed using AutoDock and visualized with PyMOL2.5.2. The Kunming mice were randomly divided into the control group, the model group, the SNS group, and the trimetazidine (TMZ) group. The mice were subcutaneously injected with isoprenaline (ISO, 5 mg·kg-1·d-1) to establish an MI model. The drug was continuously intervened for 7 days. The ST-segment changes were recorded by electrocardiogram (ECG), and the tissue morphology changes were observed by hematoxylin-eosin (HE) staining. Cardiomyocyte ferroptosis was investigated by transmission electron microscopy. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA) levels were detected by biochemical assay. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of interleukin (IL)-6 and 4-hydroxynonenal (4-HNE). Immunohistochemical staining was employed to detect IL-6 and phosphorylated signal transducer and transcription activator 3 (p-STAT3) in cardiac tissues. Western blot was used to detect STAT3 and p-STAT3 in cardiac tissues. Real-time PCR was used to detect the levels of IL-6, IL-18, solute carrier family 7 member 11 (SLC7A11), arachidonic acid 15-lipoxygenase (ALOX15), and glutathione peroxidase 4 (GPx4) in cardiac tissues. ResultsA total of 121 active ingredients of SNS were obtained, and 58 potential targets of SNS in the treatment of MI by regulating ferroptosis were screened. The three protein modules with a score5 were mainly related to the inflammatory response. The GO function was mainly related to inflammation, and KEGG enrichment analysis showed that SNS mainly regulated ferroptosis- and inflammation- related signaling pathways. Molecular docking indicated that the core component had a higher binding force to the target site. Animal experiments confirmed that SNS reduced the level of p-STAT3 (P0.01), down-regulated the expression of ALOX15 mRNA (P0.01), up-regulated the level of serum GSH, and the expressions of SLC7A11 and GPx4 mRNA, reduced MDA and 4-HNE levels (P0.05, P0.01). Additionally, SNS improved the mitochondrial injury induced by cardiomyocyte ferroptosis, reduced the area of MI, alleviated inflammation and myocardial injury, lowered the levels of serum CK, CK-MB, LDH, IL-6, and the mRNA expression levels of IL-16 and IL-18 (P0.05), and improved ST segment elevation. ConclusionSNS can reduce ISO-induced STAT3 phosphorylation levels, inhibit ferroptosis in cardiomyocytes, alleviate inflammation and myocardial injury, thereby improving MI.
3.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
4.A survival prediction model for kidney graft based on the kidney donor profile index, time-zero biopsy and donor’s age
Chengxi JIANG ; Shunliang YANG ; Xia GAO ; Liqian WU ; Jiashu LIU ; Dong WANG
Organ Transplantation 2025;16(1):122-130
Objective To construct a predictive model for the survival of transplant kidneys after kidney transplantation. Methods The clinical data of 366 kidney transplant recipients and donors were retrospectively analyzed, and the recipients were divided into low-risk group (n=101), medium-risk group (n=189), and high-risk group (n=76) based on the kidney donor profile index (KDPI). Each group was further divided into Remuzzi score ≤3 group and Remuzzi score >3 group based on time-zero biopsy Remuzzi scores. Kaplan-Meier method was used to analyze the survival of transplant kidneys. Univariate and multivariate Cox regression analyses were performed to identify risk factors affecting long-term survival after kidney transplantation. A predictive model for transplant kidney survival was established and a nomogram was drawn. The predictive performance of the model was evaluated using the receiver operating characteristic (ROC) curve and the area under the curve (AUC). Results The median KDPI was 65%, and the median Remuzzi score was 3. The 5-year survival rate of transplant kidneys was 83.5%. Kaplan-Meier survival curves showed that in the KDPI medium-risk and KDPI high-risk groups, the subgroup with lower Remuzzi score had a higher survival rates of transplant kidneys than the subgroup with higher Remuzzi score. Univariate and multivariate Cox regression analyses showed that KDPI, Remuzzi score, and donor’s age were independent risk factors for transplant kidney loss (all P<0.05). The ROC curve showed that the AUC of the nomogram prediction model established based on independent risk factors for the 1, 3 and 5-year survival rates of transplant kidneys were 0.91, 0.93 and 0.94 for the training set, and 0.89, 0.85 and 0.88 for the validation set. Calibration curves shows good consistency between the training and validation sets of the model. Conclusions The nomogram predictive model based on KDPI, time-zero biopsy Remuzzi score and donor’s age has good predictive value for transplant kidney survival.
5.Mechanism of inhibitory effect of total flavonoids from Taraxacum mongolicum on obesity in mice by regulating intestinal flora
Yixue GAO ; Lin GUO ; Linyan LANG ; Jing WU ; Haoyang WANG ; Jing YANG ; Mingsan MIAO ; Zhanzhan LI
China Pharmacy 2025;36(3):293-299
OBJECTIVE To investigate the mechanism of the inhibitory effect of total flavonoids from Taraxacum mongolicum on high-fat diet-induced obesity in mice through modulation of intestinal flora. METHODS Twenty-four C57BL/6J mice were randomly divided into blank group, model group and T. mongolicum total flavonoid group, with 8 mice in each group. Except for the blank group, the other 2 groups were given a high-fat diet, while T. mongolicum total flavonoid group was given T. mongolicum total flavonoid [400 mg/(kg·d)] intragastrically, once a day, for 8 consecutive weeks. During the experiment, the food intake of each group of mice was recorded. After the last medication, the body mass, fat weight, blood lipid level and pathological changes of liver and epididymal fat in mice were evaluated to observe the effect of T. mongolicum total flavonoid on the treatment of obesity in mice. The changes in abundance and structure of intestinal flora in mice were detected by amplicon sequencing; the effects of T. mongolicum total flavonoids on fat metabolism related genes were analyzed by qPCR. RESULTS Compared with model group, the body weight of mice in T. mongolicum total flavonoids group was decreased significantly (P<0.05); the levels of total lipid cholesterol, triglycerides, and LDL cholesterol were all decreased significantly (P<0.01), and the level of HDL cholesterol was increased significantly (P<0.01); the fat indexes of inguinal white adipose tissue and epididymal white wind_lz@hactcm.edu.cn adipose tissue were significantly reduced (P<0.05); significant improvement in hepatocellular steatosis and adipose cytopathy were significantly improved; mRNA expressions of COX7A1 and COX8B were significantly upregulated (P<0.05). The results of bacterial colony detection showed that compared with the model group, there was a rising trend in the diversity of the bacterial colony in T. mongolicum total flavonoids group, and the Sobs index characterization and β diversity were increased significantly (P<0.05). Relative abundances of Blautia, norank_f_Ruminococcaceae, Bilophila, Alistipes, classified_f_Ruminococcaceae, Parabacteroides, norank_f_Desulfovibrionaceae, Anaerotruncus were significantly up-regulated(P<0.05), while those of Faecalibaculum, Erysipelatoclostridium, GCA-900066575, Tuzzerella, Lactobacillus, norank_f_norank_o_RF39, achnospiraceae_FCS020_group were significantly down-regulated (P<0.05). CONCLUSIONS T. mongolicum total flavonoids can reduce body mass, fat weight and blood lipid levels, and repair the pathological damage to liver and epididymal fat in obese mice, which is related to improving intestinal flora disorders caused by high-fat diet.
6.Concept,Organizational Structure,and Medical Model of the Traditional Chinese Medicine Myocardial Infarction Unit
Jun LI ; Jialiang GAO ; Jie WANG ; Zhenpeng ZHANG ; Xinyuan WU ; Ji WU ; Zicong XIE ; Jingrun CUI ; Haoqiang HE ; Yuqing TAN ; Chunkun YANG
Journal of Traditional Chinese Medicine 2025;66(9):873-877
The traditional Chinese medicine (TCM) myocardial infarction (MI) unit is a standardized, regulated, and continuous integrated care unit guided by TCM theory and built upon existing chest pain centers or emergency care units. This unit emphasizes multidisciplinary collaboration and forms a restructured clinical entity without altering current departmental settings, offering comprehensive diagnostic and therapeutic services with full participation of TCM in the treatment of MI. Its core medical model is patient-centered and disease-focused, providing horizontally integrated TCM-based care across multiple specialties and vertically constructing a full-cycle treatment unit for MI, delivering prevention, treatment, and rehabilitation during the acute, stable, and recovery phases. Additionally, the unit establishes a TCM-featured education and prevention mechanism for MI to guide patients in proactive health management, reduce the incidence of myocardial infarction, and improve quality of life.
7.Regulation of apoptosis and autophagy in hepatoblastoma cells by Ganoderma lucidum polysaccharides through Akt/mTOR pathway.
Yang GE ; Hang GAO ; Yun-Peng QIN ; Rui SHEN ; Hua-Zhang WU ; Ting YE ; Hang SONG
China Journal of Chinese Materia Medica 2025;50(9):2432-2441
This research investigated the impact of Ganoderma lucidum polysaccharides(GLP) on hepatoblastoma HepG2 and Huh6 cell models, as well as KM mouse model with in situ transplanted tumors, so as to provide a theoretical basis for the clinical application of GLP. Cell viability was assessed through the CCK-8 assay, whereas cell proliferation was evaluated by using the BeyoClick~(TM)EdU-488 test. Cell apoptosis was visualized via Hochest 33258 staining, and autophagy was detected through Mrfp-GFP-LC3 dual fluorescence staining. An in situ tumor transplantation model was created by using HepG2 cells in mice, and mice were treated with normal saline and GLP of 100, 200, and 300 mg·kg~(-1) for tumor count calculation and size assessment. Hematoxylin-eosin(HE) staining was used to observe pathological changes in tumor tissue and vital organs(liver, kidney, lung, spleen, and heart). Western blot analysis was conducted to measure the protein expressions of tumor protein P53(P53), B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cleaved-caspase-3, Beclin-1, autophagy related protein-5(Atg-5), microtubule-associated protein-light chain-3Ⅰ(LC3Ⅰ)/LC3Ⅱ, autophagy adapter protein 62(P62), protein kinase B(Akt), p-Akt, mammalian target of rapamycin(mTOR), and p-mTOR. The in vitro experiment revealed that compared with the control group, after GLP treatment, tumor cell viability decreased significantly; apoptosis rate increased in a dose-dependent manner, and autophagic flux was inhibited. The in vivo experiments showed that compared with the model group, mice treated with GLP exhibited significantly fewer and smaller tumors. Western blot results showed that compared with the control group or model group, levels of P53, Bax, cleaved-caspase-3, Beclin-1, Atg-5, and LC3-Ⅱ/LC3-Ⅰ were significantly increased after GLP treatment, and the levels of Bcl-2, P62, p-Akt/Akt, and p-mTOR/mTOR were significantly decreased. These outcomes suggest that GLP promotes apoptosis and autophagy in hepatoblastoma cells by regulating the Akt/mTOR pathway.
Animals
;
Humans
;
Autophagy/drug effects*
;
Reishi/chemistry*
;
Mice
;
Apoptosis/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Liver Neoplasms/genetics*
;
Hepatoblastoma/genetics*
;
Polysaccharides/pharmacology*
;
Cell Line, Tumor
;
Signal Transduction/drug effects*
;
Male
;
Cell Proliferation/drug effects*
;
Hep G2 Cells
8.Research progress on pentacyclic triterpenoids in medicinal Ilex species and their pharmacological activities.
Yu-Ling LIU ; Yi-Ran WU ; Bao-Lin WANG ; Xiao-Wei SU ; Qiu-Juan CHEN ; Yi RAO ; Shi-Lin YANG ; Li-Ni HUO ; Hong-Wei GAO
China Journal of Chinese Materia Medica 2025;50(12):3252-3266
Traditional Chinese medicine(TCM) capable of clearing heat and removing toxin is most commonly used in clinical practice and has the effect of removing fire-heat and toxin. Studies have shown that most of the Ilex plants have the effect of clearing heat and removing toxin, among which the varieties of I. cornuta, I. pubescens, I. rotunda, I. latifolia, and I. chinensis are most widely used. These plants generally contain triterpenoids and their glycosides, alkaloids, flavonoids, phenylpropanoids, and other chemical components, especially pentacyclic triterpenoids. According to their skeletons, pentacyclic triterpenoids can be divided into the oleanane type, the ursane type, the lupinane type, etc. Among them, ursane-type components are the most abundant, and 136 species have been found so far. These components have been proved to have pharmacological effects such as anti-inflammatory, anti-tumor, hypolipidemic, anti-thrombosis, cardiomyocyte-protective, antibacterial, and hepatoprotective effects. Therefore, this paper systematically reviews the domestic and foreign literature on Ilex plants with a focus on the research progress on pentacyclic triterpenoids and their pharmacological activities, aiming to provide reference for the development of TCM resources with the effect of clearing heat and removing toxin.
Ilex/chemistry*
;
Plants, Medicinal/chemistry*
;
Pentacyclic Triterpenes/pharmacology*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Animals
9.Studies on pharmacological effects and chemical components of different extracts from Bawei Chenxiang Pills.
Jia-Tong WANG ; Lu-Lu KANG ; Feng ZHOU ; Luo-Bu GESANG ; Ya-Na LIANG ; Guo-Dong YANG ; Xiao-Li GAO ; Hui-Chao WU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(11):3035-3042
The medicinal materials of Bawei Chenxiang Pills(BCPs) were extracted via three methods: reflux extraction by water, reflux extraction by 70% ethanol, and extraction by pure water following reflux extraction by 70% ethanol, yielding three extracts of ST, CT, and CST. The efficacy of ST(760 mg·kg~(-1)), CT(620 mg·kg~(-1)), and CST(1 040 mg·kg~(-1)) were evaluated by acute myocardial ischemia(AMI) and p-chlorophenylalanine(PCPA)-induced insomnia in mice, respectively. Western blot was further utilized to investigate their hypnosis mechanisms. The main chemical components of different extracts were identified by the UPLC-Q-Exactive-MS technique. The results showed that CT and CST significantly increased the ejection fraction(EF) and fractional shortening(FS) of myocardial infarction mice, reduced left ventricular internal dimension at end-diastole(LVIDd) and left ventricular internal dimension at end-systole(LVIDs). In contrast, ST did not exhibit significant effects on these parameters. In the insomnia model, CT significantly reduced sleep latency and prolonged sleep duration, whereas ST only prolonged sleep duration without shortening sleep latency. CST showed no significant effects on either sleep latency or sleep duration. Additionally, both CT and ST upregulated glutamic acid decarboxylase 67(GAD67) protein expression in brain tissue. A total of 15 main chemical components were identified from CT, including 2-(2-phenylethyl) chromone and 6-methoxy-2-(2-phenylethyl) chromone. Six chemical components including chebulidic acid were identified from ST. The results suggested that chromones and terpenes were potential anti-myocardial ischemia drugs of BCPs, and tannin and phenolic acids were potential hypnosis drugs. This study enriches the pharmacological and chemical research of BCPs, providing a basis and reference for their secondary development, quality standard improvement, and clinical application.
Animals
;
Drugs, Chinese Herbal/isolation & purification*
;
Mice
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Humans
;
Myocardial Infarction/drug therapy*
;
Myocardial Ischemia/drug therapy*
10.Modified Sini Powder in treating mild to moderate generalized anxiety disorder in patients with syndrome of liver depression transforming into fire: a single-center, randomized, double-blind, dose-controlled trial.
Jia-Xin XU ; Hong-Jun YANG ; Hong-Wei WU ; Li-Jun MAO ; Jian-Xin WANG ; Zong-Liang YU ; Yang ZHAO ; Xiao-Nan HAO ; Rui GAO
China Journal of Chinese Materia Medica 2025;50(14):4063-4070
A single-center, randomized, double-blind, dose-controlled trial of modified Sini Powder in treating mild to moderate generalized anxiety disorder(GAD) in the patients with syndrome of liver depression transforming into fire was conducted at Xiyuan Hospital, China Academy of Chinese Medical Sciences. A total of 80 patients with mild to moderate GAD and the syndrome of liver depression transforming into fire were included. Patients were assigned by the central randomization system at a ratio of 3∶1 into an observation group(n=60, receiving a conventional-dose of granules of modified Sini Powder) and a control group(n=20, receiving low-dose granules with the active ingredients being 50% of that in observation group). Assessments were conducted before treatment(baseline), after 2 weeks of introduction, after 2/4/8 weeks of treatment, and after 4 weeks of follow-up. The results were summarized as follows. In terms of primary outcome indicators, the observation group(62.2%) showed higher total response rate than the control group(26.6%)(P<0.05), and greater Hamilton anxiety scale(HAMA) score reduction after 8 weeks of treatment(P<0.05). In terms of secondary outcome indicators, the HAMA score(somatic anxiety score), traditional Chinese medicine(TCM) syndrome scores, Pittsburgh sleep quality index(PSQI) scale, and clinical global impression(CGI) scale score in the observation group showed a significant compared to the control group at each visit points(P<0.05). Adverse events occurred in 10 cases, including 9(16.9%) cases in the observation group and 1(6.6%) case in the control group. No adverse reaction was observed. In conclusion, conventional-dose modified Sini Powder demonstrated superior efficacy and favorable safety for mild and moderate GAD in the patients with the syndrome of liver depression transforming into fire over low-dose treatment.
Humans
;
Male
;
Female
;
Adult
;
Middle Aged
;
Double-Blind Method
;
Drugs, Chinese Herbal/administration & dosage*
;
Anxiety Disorders/drug therapy*
;
Treatment Outcome
;
Young Adult
;
Powders
;
Aged
;
Liver/drug effects*
;
Generalized Anxiety Disorder

Result Analysis
Print
Save
E-mail