1.Further Recognization of Disease Name in Traditional Chinese Medicine for Knee Osteoarthritis Based on Micropathologic Phenotypes
Hongfei WU ; Yushi CUI ; Yun GAO ; Shuai ZHANG ; Mingyuan WANG ; Xingping ZHANG ; Zhilong ZHANG
Journal of Traditional Chinese Medicine 2025;66(11):1089-1093
This paper interprets the disease name related to bi (痹) disease in traditional Chinese medicine (TCM) from the perspective of micropathological phenotypes in knee osteoarthritis (KOA). By systematically reviewing classical TCM literature on the pathogenesis and clinical features of different subtypes such as damp-retention bi, bone bi, and tendon bi, and integrating these with current research on pathological subtypes of KOA including the synovitis type, cartilage-meniscus type, and subchondral bone type, the study explores the correlation between traditional disease terms and modern micropathological phenotypes. The author proposes subtype classifications of damp-retention bi corresponding to synovial inflammation, bone bi related to abnormal subchondral bone remodeling, and tendon bi representing cartilage and meniscus degeneration. This approach provides a microscopic biological explanation for TCM syndrome differentiation and offers new perspectives for advancing integrative diagnostic and therapeutic strategies in both Chinese and western medicine.
2.Advances in the mechanisms underlying the contributions of thymocyte selection-associated high mobility group box to pathogen infections: a review
Yuanfeng WANG ; Tingting YING ; Junru WU ; Yuna HONG ; Haorui GUO ; Mingyue WANG ; Zhenke YANG ; Shuai WANG
Chinese Journal of Schistosomiasis Control 2025;37(5):561-568
Thymocyte selection-associated high mobility group box (TOX), a member of the high mobility group protein super-family, plays an important role in T cell development, functional maintenance, and exhaustion. It has been recently found that TOX exerts critical immunoregulatory functions during pathogen infections, and TOX expression is strongly associated with the intensity and tolerance of host immune responses. This review systematically summarizes the structural and functional features of TOX and focuses on its expression dynamics, mechanisms of action, and immunomodulatory effects during viral, bacterial, and parasitic infections, which provides a theoretical support to better understanding of the role of TOX in infectious diseases and provides new insights into development of potential immunotherapeutic strategies targeting TOX.
3.Primary regional disparities in clinical characteristics, treatments, and outcomes of a typically designed study of valvular heart disease at 46 tertiary hospitals in China: Insights from the China-VHD Study.
Xiangming HU ; Yunqing YE ; Zhe LI ; Qingrong LIU ; Zhenyan ZHAO ; Zheng ZHOU ; Weiwei WANG ; Zikai YU ; Haitong ZHANG ; Zhenya DUAN ; Bincheng WANG ; Bin ZHANG ; Junxing LV ; Shuai GUO ; Yanyan ZHAO ; Runlin GAO ; Haiyan XU ; Yongjian WU
Chinese Medical Journal 2025;138(8):937-946
BACKGROUND:
Valvular heart disease (VHD) has become increasingly common with the aging in China. This study aimed to evaluate regional differences in the clinical features, management strategies, and outcomes of patients with VHD across different regions in China.
METHODS:
Data were collected from the China-VHD Study. From April 2018 to June 2018, 12,347 patients who presented with moderate or severe native VHD with a median of 2 years of follow-up from 46 centers at certified tertiary hospitals across 31 provinces, autonomous regions, and municipalities in Chinese mainland were included in this study. According to the locations of the research centers, patients were divided into five regional groups: eastern, southern, western, northern, and central China. The clinical features of VHD patients were compared among the five geographical regions. The primary outcome was all-cause mortality or rehospitalization for heart failure. Kaplan-Meier survival analysis was used to compare the cumulative incidence rate.
RESULTS:
Among the enrolled patients (mean age, 61.96 years; 6877 [55.70%] male), multiple VHD was the most frequent type (4042, 32.74%), which was mainly found in eastern China, followed by isolated mitral regurgitation (3044, 24.65%), which was mainly found in northern China. The etiology of VHD varied significantly across different regions of China. The overall rate of valve interventions was 32.67% (4008/12,268), with the highest rate in southern China at 48.46% (205/423). In terms of procedure, the proportion of transcatheter valve intervention was relatively low compared to that of surgical treatment. Patients with VHD in western China had the highest incidence of all-cause mortality or rehospitalization for heart failure. Valve intervention significantly improved the outcome of patients with VHD in all five regions (all P <0.05).
CONCLUSIONS:
This study revealed that patients with VHD in China are characterized by significant geographic disparities in clinical features, treatment, and clinical outcomes. Targeted efforts are needed to improve the management and prognosis of patients with VHD in China according to differences in geographical characteristics.
REGISTRATION
ClinicalTrials.gov , NCT03484806.
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
China/epidemiology*
;
Heart Valve Diseases/therapy*
;
Kaplan-Meier Estimate
;
Tertiary Care Centers
;
Treatment Outcome
4.Establishment of a sandwich ELISA method for CHGA in saliva samples and its preliminary application in stress detection.
Niqi SHAN ; Shanshou LIU ; Yuling WANG ; Hui LIU ; Shuai WANG ; Yilin WU ; Chujun DUAN ; Hanyin FAN ; Yangmengjie JING ; Ran ZHUANG ; Chunmei ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):324-330
Objective To establish a sandwich enzyme-linked immunosorbent assay (ELISA) method for the quantitative detection of Chromogranin A (CHGA) in saliva, and to explore its preliminary application in the testing of saliva samples. Methods Recombinant human CHGA protein was used to immunize BALB/c mice, and monoclonal antibodies (mAbs) were prepared and screened using conventional hybridoma technology. A double-antibody sandwich ELISA detection method was constructed, and the matrix effect of saliva samples was optimized. This method was then applied to detect the concentration of CHGA in the saliva of stressed individuals. Results Twenty-one stable hybridoma cell lines secreting high affinity anti-human CHGA antibodies were obtained. A pair of detection antibodies with the best effect was selected, and the optimal coating concentration was determined to be 10 μg/mL, with the optimal dilution of detection antibodies being 1:32 000. The accuracy and reproducibility of this method were verified, with both intra-batch and inter-batch variation coefficients less than 15×, and the recovery rate between 80× and 120×. The matrix effect was further optimized to make it suitable for saliva sample detection. Saliva samples from individuals in different stress states were collected, and the CHGA levels were detected using the method established in this study, indicating its potential to reflect the intensity of stress. Conclusion A reliable saliva CHGA ELISA detection method has been successfully established, and its potential as a biomarker in stress-related research has been preliminarily explored.
Saliva/metabolism*
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Humans
;
Animals
;
Mice, Inbred BALB C
;
Mice
;
Chromogranin A/immunology*
;
Antibodies, Monoclonal/immunology*
;
Female
;
Male
;
Reproducibility of Results
;
Adult
5.Diagnosis of coronary artery lesions in children based on Z-score regression model.
Yong WANG ; Jia-Ying JIANG ; Yan DENG ; Bo LI ; Ping SHUAI ; Xiao-Ping HU ; Yin-Yan ZHANG ; Han WU ; Lu-Wei YE ; Qian PENG
Chinese Journal of Contemporary Pediatrics 2025;27(2):176-183
OBJECTIVES:
To construct a Z-score regression model for coronary artery diameter based on echocardiographic data from children in Sichuan Province and to establish a Z-score calculation formula.
METHODS:
A total of 744 healthy children who underwent physical examinations at Sichuan Provincial People's Hospital from January 2020 to December 2022 were selected as the modeling group, while 251 children diagnosed with Kawasaki disease at the same hospital from January 2018 to December 2022 were selected as the validation group. Pearson correlation analysis was conducted to analyze the relationships between coronary artery diameter values and age, height, weight, and body surface area. A regression model was constructed using function transformation to identify the optimal regression model and establish the Z-score calculation formula, which was then validated.
RESULTS:
The Pearson correlation analysis showed that the correlation coefficients for the diameters of the left main coronary artery, left anterior descending artery, left circumflex artery, and right coronary artery with body surface area were 0.815, 0.793, 0.704, and 0.802, respectively (P<0.05). Among the constructed regression models, the power function regression model demonstrated the best performance and was therefore chosen as the optimal model for establishing the Z-score calculation formula. Based on this Z-score calculation formula, the detection rate of coronary artery lesions was found to be 21.5% (54/251), which was higher than the detection rate based on absolute values of coronary artery diameter. Notably, in the left anterior descending and left circumflex arteries, the detection rate of coronary artery lesions using this Z-score calculation formula was higher than that of previous classic Z-score calculation formulas.
CONCLUSIONS
The Z-score calculation formula established based on the power function regression model has a higher detection rate for coronary artery lesions, providing a strong reference for clinicians, particularly in assessing coronary artery lesions in children with Kawasaki disease.
Humans
;
Male
;
Female
;
Child, Preschool
;
Child
;
Coronary Artery Disease/diagnostic imaging*
;
Infant
;
Mucocutaneous Lymph Node Syndrome
;
Regression Analysis
;
Coronary Vessels/diagnostic imaging*
;
Echocardiography
;
Adolescent
6.Serological and Molecular Biological Characteristics of cisAB Blood Group and Transfusion Strategies.
Si-Meng WU ; Qiao-Ni YANG ; Wa GAO ; Xiao-Shuai LI ; Qiu-Shi WANG
Journal of Experimental Hematology 2025;33(1):206-210
OBJECTIVE:
To analyze the serological and molecular biological characteristics of 5 patients with cis AB blood group, and to explore the safe transfusion strategy.
METHODS:
Serological identification of the samples' blood group was performed using anti-A, anti-B, anti-D, anti-A1, anti-H typing reagents and ABO reagent erythrocytes. Molecular biological identification of the samples' blood group was performed using PCR-SSP or gene sequencing.
RESULTS:
The serological identification results of blood group in 5 patients all showed inconsistent forward and reverse typing, presenting as A2B3 or A2Bw. ABO gene sequencing of samples 1, 2 and 3 showed 261delG in exon 6 and 467C>T, 803G>C in exon 7. The genotypes of samples 1, 2 and 3 were determined to be cisAB/O . PCR-SSP genotyping was performed on sample 4 and 5,and the results were both cisAB/O .
CONCLUSION
Patients with cisAB alleles have inconsistent serological manifestations, and genetic testing is necessary to ensure the safety and effectiveness of blood transfusion.
Humans
;
ABO Blood-Group System/genetics*
;
Blood Transfusion
;
Blood Grouping and Crossmatching
;
Genotype
;
Blood Group Antigens/genetics*
;
Alleles
;
Male
;
Female
7.The Valvular Heart Disease-specific Age-adjusted Comorbidity Index (VHD-ACI) score in patients with moderate or severe valvular heart disease.
Mu-Rong XIE ; Bin ZHANG ; Yun-Qing YE ; Zhe LI ; Qing-Rong LIU ; Zhen-Yan ZHAO ; Jun-Xing LV ; De-Jing FENG ; Qing-Hao ZHAO ; Hai-Tong ZHANG ; Zhen-Ya DUAN ; Bin-Cheng WANG ; Shuai GUO ; Yan-Yan ZHAO ; Run-Lin GAO ; Hai-Yan XU ; Yong-Jian WU
Journal of Geriatric Cardiology 2025;22(9):759-774
BACKGROUND:
Based on the China-VHD database, this study sought to develop and validate a Valvular Heart Disease- specific Age-adjusted Comorbidity Index (VHD-ACI) for predicting mortality risk in patients with VHD.
METHODS & RESULTS:
The China-VHD study was a nationwide, multi-centre multi-centre cohort study enrolling 13,917 patients with moderate or severe VHD across 46 medical centres in China between April-June 2018. After excluding cases with missing key variables, 11,459 patients were retained for final analysis. The primary endpoint was 2-year all-cause mortality, with 941 deaths (10.0%) observed during follow-up. The VHD-ACI was derived after identifying 13 independent mortality predictors: cardiomyopathy, myocardial infarction, chronic obstructive pulmonary disease, pulmonary artery hypertension, low body weight, anaemia, hypoalbuminaemia, renal insufficiency, moderate/severe hepatic dysfunction, heart failure, cancer, NYHA functional class and age. The index exhibited good discrimination (AUC, 0.79) and calibration (Brier score, 0.062) in the total cohort, outperforming both EuroSCORE II and ACCI (P < 0.001 for comparison). Internal validation through 100 bootstrap iterations yielded a C statistic of 0.694 (95% CI: 0.665-0.723) for 2-year mortality prediction. VHD-ACI scores, as a continuous variable (VHD-ACI score: adjusted HR (95% CI): 1.263 (1.245-1.282), P < 0.001) or categorized using thresholds determined by the Yoden index (VHD-ACI ≥ 9 vs. < 9, adjusted HR (95% CI): 6.216 (5.378-7.184), P < 0.001), were independently associated with mortality. The prognostic performance remained consistent across all VHD subtypes (aortic stenosis, aortic regurgitation, mitral stenosis, mitral regurgitation, tricuspid valve disease, mixed aortic/mitral valve disease and multiple VHD), and clinical subgroups stratified by therapeutic strategy, LVEF status (preserved vs. reduced), disease severity and etiology.
CONCLUSION
The VHD-ACI is a simple 13-comorbidity algorithm for the prediction of mortality in VHD patients and providing a simple and rapid tool for risk stratification.
8.Targeting copper homeostasis: Akkermansia-derived OMVs co-deliver Atox1 siRNA and elesclomol for cancer therapy.
Muhammad HAMZA ; Shuai WANG ; Hao WU ; Jiayi SUN ; Yang DU ; Chuting ZENG ; Yike LIU ; Kun LI ; Xili ZHU ; Huiying LIU ; Lin CHEN ; Motao ZHU
Acta Pharmaceutica Sinica B 2025;15(5):2640-2654
Cuproptosis, a recently identified form of regulated cell death triggered by excess intracellular copper, has emerged as a promising cytotoxic strategy for cancer therapy. However, the therapeutic efficacy of copper ionophores such as elesclomol (ES) is often hindered by cellular copper homeostasis mechanisms that limit copper influx and cuproptosis induction. To address this challenge, we developed a nanoagent utilizing outer membrane vesicle (OMV) derived from Akkermansia muciniphila (Akk) for co-delivery of antioxidant 1 copper chaperone (Atox1)-targeting siRNA and ES (siAtox1/ES@OMV) to tumors. In vitro, we demonstrated that Atox1 knockdown via siRNA significantly disrupted copper export mechanisms, resulting in elevated intracellular copper levels. Simultaneously, ES facilitated efficient copper influx and mitochondrial transport, leading to Fe-S cluster depletion, increased proteotoxic stress, and robust cuproptosis. In vivo, siAtox1/ES@OMV achieved targeted tumor delivery and induced pronounced cuproptosis. Furthermore, leveraging the immunomodulatory properties of OMVs, siAtox1/ES@OMV promoted T-cell infiltration and the activation of tumor-reactive cytotoxic T cells, enhancing tumor immune responses. The combination of siAtox1/ES-induced cuproptosis and immunogenic cell death synergistically suppressed tumor growth in both subcutaneous breast cancer and orthotopic rectal cancer mouse models. This study highlights the potential of integrating copper homeostasis disruption with a copper ionophore using an immunomodulatory OMV-based vector, offering a promising combinatorial strategy for cancer therapy.
9.PARylation promotes acute kidney injury via RACK1 dimerization-mediated HIF-1α degradation.
Xiangyu LI ; Xiaoyu SHEN ; Xinfei MAO ; Yuqing WANG ; Yuhang DONG ; Shuai SUN ; Mengmeng ZHANG ; Jie WEI ; Jianan WANG ; Chao LI ; Minglu JI ; Xiaowei HU ; Xinyu CHEN ; Juan JIN ; Jiagen WEN ; Yujie LIU ; Mingfei WU ; Jutao YU ; Xiaoming MENG
Acta Pharmaceutica Sinica B 2025;15(9):4673-4691
Poly(ADP-ribosyl)ation (PARylation) is a specific form of post-translational modification (PTM) predominantly triggered by the activation of poly-ADP-ribose polymerase 1 (PARP1). However, the role and mechanism of PARylation in the advancement of acute kidney injury (AKI) remain undetermined. Here, we demonstrated the significant upregulation of PARP1 and its associated PARylation in murine models of AKI, consistent with renal biopsy findings in patients with AKI. This elevation in PARP1 expression might be attributed to trimethylation of histone H3 lysine 4 (H3K4me3). Furthermore, a reduction in PARylation levels mitigated renal dysfunction in the AKI mouse models. Mechanistically, liquid chromatography-mass spectrometry indicated that PARylation mainly occurred in receptor for activated C kinase 1 (RACK1), thereby facilitating its subsequent phosphorylation. Moreover, the phosphorylation of RACK1 enhanced its dimerization and accelerated the ubiquitination-mediated hypoxia inducible factor-1α (HIF-1α) degradation, thereby exacerbating kidney injury. Additionally, we identified a PARP1 proteolysis-targeting chimera (PROTAC), A19, as a PARP1 degrader that demonstrated superior protective effects against renal injury compared with PJ34, a previously identified PARP1 inhibitor. Collectively, both genetic and drug-based inhibition of PARylation mitigated kidney injury, indicating that the PARylated RACK1/HIF-1α axis could be a promising therapeutic target for AKI treatment.
10.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction

Result Analysis
Print
Save
E-mail