1.Anti-tumor effects of Toxoplasma gondii and antigen-pulsed dendritic cells in mice bearing breast cancer
Bong Kyun KIM ; Hei Gwon CHOI ; Jae-Hyung LEE ; In Wook CHOI ; Jae-Min YUK ; Guang-Ho CHA ; Young-Ha LEE
Parasites, Hosts and Diseases 2025;63(1):37-49
Cancer immunotherapy is widely used to treat various cancers to augment the weakened host immune response against tumors. Dendritic cells (DCs) are specialized antigen-presenting cells that play dual roles in inducing innate and adaptive immunity. Toxoplasma gondii is a protozoan parasite that exhibits anti-tumor activity against certain types of cancers. However, little is known about the anti-tumor effects of T. gondii or tumor/parasite antigen-pulsed DCs (DC vaccines, DCV) in breast cancer. In this study, C57BL/6 mice were administered E0771 mouse breast cancer cells (Cancer-injected) subcutaneously, T. gondii Me49 cysts orally (TG-injected), or DCs pulsed with breast cancer cell lysate antigen and T. gondii lysate antigens (DCV-injected) intraperitoneally. Tumor size and immunological characteristics were subsequently evaluated. We also evaluated matrix metalloproteinase (MMP)-2 and MMP-9 levels in E0771 mouse breast cancer cells co-cultured with T. gondii or DCs by RT-PCR. The tumor volumes of mice injected with breast cancer cells and antigen-pulsed DCs (Cancer/DCV-injected mice) were similar to those of Cancer-injected mice; however, they were significantly reduced in T. gondii-infected tumor-bearing (TG/Cancer-injected) mice. Moreover, tumor volumes were significantly reduced by adding antigen-pulsed DCs (TG/Cancer/DCV-injected mice) compared to TG/Cancer-injected mice. The levels of IFN-γ, serum IgG2a levels, and CD8+ T cell populations were significantly higher in DCV- and TG-injected mice than in control mice, while no significant differences between Cancer- and Cancer/DCV-injected mice were observed. The levels of IFN-γ, the IgG2a levels, and the percentage of CD8+ T cells were significantly increased in TG/Cancer- and TG/Cancer/DCV-injected mice than in Cancer-injected mice. IFN-γ levels and serum IgG2a levels were further increased in TG/Cancer/DCV-injected mice than in TG/Cancer-injected mice. The MMP-2 and MMP-9 mRNA expressions were significantly decreased in mouse breast cancer cells co-cultured with live T. gondii, T. gondii lysate antigen, or antigen-pulsed DCs (DCV) but not in inactivated DCs. These results indicate that T. gondii induces anti-tumor effects in breast cancer-bearing mice through the induction of strong Th1 immune responses, but not in antigen-pulsed DCs alone. The addition of antigen-pulsed DCs further augments the anti-tumor effects of T. gondii.
2.Occupational disease monitoring by the Korea Occupational Disease Surveillance Center: a narrative review
Dong-Wook LEE ; Inah KIM ; Jungho HWANG ; Sunhaeng CHOI ; Tae-Won JANG ; Insung CHUNG ; Hwan-Cheol KIM ; Jaebum PARK ; Jungwon KIM ; Kyoung Sook JEONG ; Youngki KIM ; Eun-Soo LEE ; Yangwoo KIM ; Inchul JEONG ; Hyunjeong OH ; Hyeoncheol OH ; Jea Chul HA ; Jeehee MIN ; Chul Gab LEE ; Heon KIM ; Jaechul SONG
The Ewha Medical Journal 2025;48(1):e9-
This review examines the challenges associated with occupational disease surveillance in Korea, particularly emphasizing the limitations of current data sources such as the Industrial Accident Compensation Insurance (IACI) statistics and special health examinations. The IACI system undercounts cases due to its emphasis on severe diseases and restrictions on approvals. Special health examinations, although they cover a broad workforce, are constrained by their annual scheduling, which leads to missed acute illnesses and subclinical conditions. The paper also explores the history of occupational disease surveillance in Korea, highlighting the fragmented and disease-specific approach of earlier systems. The authors introduce the newly established Korea Occupational Disease Surveillance Center (KODSC), a comprehensive nationwide system designed to gather, analyze, and interpret data on occupational diseases through a network of regional centers. By incorporating hospital-based surveillance and focusing on acute poisonings and other sentinel events, the KODSC aims to overcome the limitations of previous systems and promote collaboration with various agencies. Although it is still in the early stages of implementation, the KODSC demonstrates potential for improving data accuracy and contributing valuable insights for public health policy.
3.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
Background:
An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods:
This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort.
Results:
The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion
The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
4.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
Background:
An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods:
This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort.
Results:
The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion
The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
5.ERRATUM: Imaging follow-up strategy after endovascular treatment of intracranial aneurysms: A literature review and guideline recommendations
Yong-Hwan CHO ; Jaehyung CHOI ; Chae-Wook HUH ; Chang Hyeun KIM ; Chul Hoon CHANG ; Soon Chan KWON ; Young Woo KIM ; Seung Hun SHEEN ; Sukh Que PARK ; Jun Kyeung KO ; Sung-kon HA ; Hae Woong JEONG ; Hyen Seung KANG ;
Journal of Cerebrovascular and Endovascular Neurosurgery 2025;27(1):80-80
6.PDK4 expression and tumor aggressiveness in prostate cancer
Eun Hye LEE ; Yun-Sok HA ; Bo Hyun YOON ; Minji JEON ; Dong Jin PARK ; Jiyeon KIM ; Jun-Koo KANG ; Jae-Wook CHUNG ; Bum Soo KIM ; Seock Hwan CHOI ; Hyun Tae KIM ; Tae-Hwan KIM ; Eun Sang YOO ; Tae Gyun KWON
Investigative and Clinical Urology 2025;66(3):227-235
Purpose:
Prostate cancer ranks as the second most common cancer in men globally, representing a significant cause of cancer-related mortality. Metastasis, the spread of cancer cells from the primary site to distant organs, remains a major challenge in managing prostate cancer. Pyruvate dehydrogenase kinase 4 (PDK4) is implicated in the regulation of aerobic glycolysis, emerging as a potential player in various cancers. However, its role in prostate cancer remains unclear. This study aims to analyze PDK4 expression in prostate cancer cells and human samples, and to explore the gene's clinical significance.
Materials and Methods:
PDK4 expression was detected in cell lines and human tissue samples. Migration ability was analyzed using Matrigel-coated invasion chambers. Human samples were obtained from the Kyungpook National University Chilgok Hospital.
Results:
PDK4 expression was elevated in prostate cancer cell lines compared to normal prostate cells, with particularly high levels in DU145 and LnCap cell lines. PDK4 knockdown in these cell lines suppressed their invasion ability, indicating a potential role of PDK4 in prostate cancer metastasis. Furthermore, our results revealed alterations in epithelial-mesenchymal transition markers and downstream signaling molecules following PDK4 suppression, suggesting its involvement in the modulation of invasion-related pathways. Furthermore, PDK4 expression was increased in prostate cancer tissues, especially in castration-resistant prostate cancer, compared to normal prostate tissues, with PSA and PDK4 expression showing a significantly positive correlation.
Conclusions
PDK4 expression in prostate cancer is associated with tumor invasion and castration status. Further validation is needed to demonstrate its effectiveness as a therapeutic target.
7.Poor Prognosis of Pneumococcal Co-Infection in Hospitalized Patients with COVID-19: A Propensity Score-Matched Analysis
Soyoon HWANG ; Eunkyung NAM ; Shin-Woo KIM ; Hyun-Ha CHANG ; Yoonjung KIM ; Sohyun BAE ; Nan Young LEE ; Yu Kyung KIM ; Ji Sun KIM ; Han Wook PARK ; Joon Gyu BAE ; Juhwan JEONG ; Ki Tae KWON
Infection and Chemotherapy 2025;57(1):172-178
The impact of Streptococcus pneumoniae coinfection on coronavirus disease 2019 (COVID-19) prognosis remains uncertain. We conducted a retrospective analysis of patients hospitalized with COVID-19 who underwent a pneumococcal urinary antigen (PUA) test to assess its clinical utility. Results showed that PUA-positive patients required more oxygen support, high-flow nasal cannula, and dexamethasone compared to PUA-negative patients.Furthermore, the significantly higher incidence of a National Early Warning Score ≥5 in the PUA-positive group (P<0.001) suggests that a positive PUA test is associated with a severe disease course. However, no significant difference in mortality was observed between the two groups, and antibiotics were used in almost all patients (96.2%). While the PUA test may help guide antibiotic use in COVID-19 patients, its interpretation should be approached with caution.
8.Anti-tumor effects of Toxoplasma gondii and antigen-pulsed dendritic cells in mice bearing breast cancer
Bong Kyun KIM ; Hei Gwon CHOI ; Jae-Hyung LEE ; In Wook CHOI ; Jae-Min YUK ; Guang-Ho CHA ; Young-Ha LEE
Parasites, Hosts and Diseases 2025;63(1):37-49
Cancer immunotherapy is widely used to treat various cancers to augment the weakened host immune response against tumors. Dendritic cells (DCs) are specialized antigen-presenting cells that play dual roles in inducing innate and adaptive immunity. Toxoplasma gondii is a protozoan parasite that exhibits anti-tumor activity against certain types of cancers. However, little is known about the anti-tumor effects of T. gondii or tumor/parasite antigen-pulsed DCs (DC vaccines, DCV) in breast cancer. In this study, C57BL/6 mice were administered E0771 mouse breast cancer cells (Cancer-injected) subcutaneously, T. gondii Me49 cysts orally (TG-injected), or DCs pulsed with breast cancer cell lysate antigen and T. gondii lysate antigens (DCV-injected) intraperitoneally. Tumor size and immunological characteristics were subsequently evaluated. We also evaluated matrix metalloproteinase (MMP)-2 and MMP-9 levels in E0771 mouse breast cancer cells co-cultured with T. gondii or DCs by RT-PCR. The tumor volumes of mice injected with breast cancer cells and antigen-pulsed DCs (Cancer/DCV-injected mice) were similar to those of Cancer-injected mice; however, they were significantly reduced in T. gondii-infected tumor-bearing (TG/Cancer-injected) mice. Moreover, tumor volumes were significantly reduced by adding antigen-pulsed DCs (TG/Cancer/DCV-injected mice) compared to TG/Cancer-injected mice. The levels of IFN-γ, serum IgG2a levels, and CD8+ T cell populations were significantly higher in DCV- and TG-injected mice than in control mice, while no significant differences between Cancer- and Cancer/DCV-injected mice were observed. The levels of IFN-γ, the IgG2a levels, and the percentage of CD8+ T cells were significantly increased in TG/Cancer- and TG/Cancer/DCV-injected mice than in Cancer-injected mice. IFN-γ levels and serum IgG2a levels were further increased in TG/Cancer/DCV-injected mice than in TG/Cancer-injected mice. The MMP-2 and MMP-9 mRNA expressions were significantly decreased in mouse breast cancer cells co-cultured with live T. gondii, T. gondii lysate antigen, or antigen-pulsed DCs (DCV) but not in inactivated DCs. These results indicate that T. gondii induces anti-tumor effects in breast cancer-bearing mice through the induction of strong Th1 immune responses, but not in antigen-pulsed DCs alone. The addition of antigen-pulsed DCs further augments the anti-tumor effects of T. gondii.
9.Occupational disease monitoring by the Korea Occupational Disease Surveillance Center: a narrative review
Dong-Wook LEE ; Inah KIM ; Jungho HWANG ; Sunhaeng CHOI ; Tae-Won JANG ; Insung CHUNG ; Hwan-Cheol KIM ; Jaebum PARK ; Jungwon KIM ; Kyoung Sook JEONG ; Youngki KIM ; Eun-Soo LEE ; Yangwoo KIM ; Inchul JEONG ; Hyunjeong OH ; Hyeoncheol OH ; Jea Chul HA ; Jeehee MIN ; Chul Gab LEE ; Heon KIM ; Jaechul SONG
The Ewha Medical Journal 2025;48(1):e9-
This review examines the challenges associated with occupational disease surveillance in Korea, particularly emphasizing the limitations of current data sources such as the Industrial Accident Compensation Insurance (IACI) statistics and special health examinations. The IACI system undercounts cases due to its emphasis on severe diseases and restrictions on approvals. Special health examinations, although they cover a broad workforce, are constrained by their annual scheduling, which leads to missed acute illnesses and subclinical conditions. The paper also explores the history of occupational disease surveillance in Korea, highlighting the fragmented and disease-specific approach of earlier systems. The authors introduce the newly established Korea Occupational Disease Surveillance Center (KODSC), a comprehensive nationwide system designed to gather, analyze, and interpret data on occupational diseases through a network of regional centers. By incorporating hospital-based surveillance and focusing on acute poisonings and other sentinel events, the KODSC aims to overcome the limitations of previous systems and promote collaboration with various agencies. Although it is still in the early stages of implementation, the KODSC demonstrates potential for improving data accuracy and contributing valuable insights for public health policy.
10.Anti-tumor effects of Toxoplasma gondii and antigen-pulsed dendritic cells in mice bearing breast cancer
Bong Kyun KIM ; Hei Gwon CHOI ; Jae-Hyung LEE ; In Wook CHOI ; Jae-Min YUK ; Guang-Ho CHA ; Young-Ha LEE
Parasites, Hosts and Diseases 2025;63(1):37-49
Cancer immunotherapy is widely used to treat various cancers to augment the weakened host immune response against tumors. Dendritic cells (DCs) are specialized antigen-presenting cells that play dual roles in inducing innate and adaptive immunity. Toxoplasma gondii is a protozoan parasite that exhibits anti-tumor activity against certain types of cancers. However, little is known about the anti-tumor effects of T. gondii or tumor/parasite antigen-pulsed DCs (DC vaccines, DCV) in breast cancer. In this study, C57BL/6 mice were administered E0771 mouse breast cancer cells (Cancer-injected) subcutaneously, T. gondii Me49 cysts orally (TG-injected), or DCs pulsed with breast cancer cell lysate antigen and T. gondii lysate antigens (DCV-injected) intraperitoneally. Tumor size and immunological characteristics were subsequently evaluated. We also evaluated matrix metalloproteinase (MMP)-2 and MMP-9 levels in E0771 mouse breast cancer cells co-cultured with T. gondii or DCs by RT-PCR. The tumor volumes of mice injected with breast cancer cells and antigen-pulsed DCs (Cancer/DCV-injected mice) were similar to those of Cancer-injected mice; however, they were significantly reduced in T. gondii-infected tumor-bearing (TG/Cancer-injected) mice. Moreover, tumor volumes were significantly reduced by adding antigen-pulsed DCs (TG/Cancer/DCV-injected mice) compared to TG/Cancer-injected mice. The levels of IFN-γ, serum IgG2a levels, and CD8+ T cell populations were significantly higher in DCV- and TG-injected mice than in control mice, while no significant differences between Cancer- and Cancer/DCV-injected mice were observed. The levels of IFN-γ, the IgG2a levels, and the percentage of CD8+ T cells were significantly increased in TG/Cancer- and TG/Cancer/DCV-injected mice than in Cancer-injected mice. IFN-γ levels and serum IgG2a levels were further increased in TG/Cancer/DCV-injected mice than in TG/Cancer-injected mice. The MMP-2 and MMP-9 mRNA expressions were significantly decreased in mouse breast cancer cells co-cultured with live T. gondii, T. gondii lysate antigen, or antigen-pulsed DCs (DCV) but not in inactivated DCs. These results indicate that T. gondii induces anti-tumor effects in breast cancer-bearing mice through the induction of strong Th1 immune responses, but not in antigen-pulsed DCs alone. The addition of antigen-pulsed DCs further augments the anti-tumor effects of T. gondii.

Result Analysis
Print
Save
E-mail